Abstract

Nanojet-induced modes (NIMs) and their attenuation properties are studied in linear chains consisting of tens of touching polystyrene microspheres with sizes in the 210μm range. To couple light to NIMs we used locally excited sources of light formed by several dye-doped fluorescent microspheres from the same chain of cavities. We directly observed the formation and propagation of NIMs by means of the scattering imaging technique. By measuring attenuation at long distances from the source, we demonstrate propagation losses for NIMs as small as 0.5dB per sphere.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  2. Z. Chen, A. Taflove, and V. Backman, Opt. Lett. 31, 389 (2006).
    [CrossRef] [PubMed]
  3. S. Deng, W. Cai, and V. N. Astratov, Opt. Express 12, 6468 (2004).
    [CrossRef] [PubMed]
  4. A. V. Kanaev, V. N. Astratov, and W. Cai, Appl. Phys. Lett. 88, 111111 (2006).
    [CrossRef]
  5. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).
    [CrossRef] [PubMed]
  6. S. Lecler, Y. Takakura, and P. Meyrueis, Opt. Lett. 30, 2641 (2005).
    [CrossRef] [PubMed]
  7. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
    [CrossRef]
  8. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
    [CrossRef] [PubMed]
  9. M. Möller, U. Woggon, and M. V. Artemyev, Opt. Lett. 30, 2116 (2005).
    [CrossRef] [PubMed]
  10. V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
    [CrossRef]
  11. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, Opt. Express 14, 9460 (2006).
    [CrossRef] [PubMed]
  12. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
    [CrossRef]
  13. T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, Opt. Lett. 22, 489 (1997).
    [CrossRef] [PubMed]
  14. K. Y. Suh, Small 2, 832 (2006).
    [CrossRef] [PubMed]
  15. V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
    [CrossRef] [PubMed]

2006

2005

2004

2003

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
[CrossRef] [PubMed]

1999

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
[CrossRef]

1997

1994

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Artemyev, M. V.

Ashili, S. P.

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, Opt. Express 14, 9460 (2006).
[CrossRef] [PubMed]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

Astratov, V. N.

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, Opt. Express 14, 9460 (2006).
[CrossRef] [PubMed]

A. V. Kanaev, V. N. Astratov, and W. Cai, Appl. Phys. Lett. 88, 111111 (2006).
[CrossRef]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

S. Deng, W. Cai, and V. N. Astratov, Opt. Express 12, 6468 (2004).
[CrossRef] [PubMed]

Ataka, T.

Backman, V.

Cai, W.

A. V. Kanaev, V. N. Astratov, and W. Cai, Appl. Phys. Lett. 88, 111111 (2006).
[CrossRef]

S. Deng, W. Cai, and V. N. Astratov, Opt. Express 12, 6468 (2004).
[CrossRef] [PubMed]

Chen, Z.

Chiba, N.

Deng, S.

Edamatsu, K.

Elsesser, M. T.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
[CrossRef] [PubMed]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

Fujimura, T.

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Imada, A.

Itoh, T.

Jimba, Y.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Kanaev, A. V.

A. V. Kanaev, V. N. Astratov, and W. Cai, Appl. Phys. Lett. 88, 111111 (2006).
[CrossRef]

Kino, G. S.

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Koda, T.

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Lecler, S.

Lee, R. K.

Mamin, H. J.

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Manoharan, V. N.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
[CrossRef] [PubMed]

Meyrueis, P.

Miyazaki, H.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Möller, M.

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Muramatsu, H.

Pine, D. J.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
[CrossRef] [PubMed]

Rugar, D.

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Scherer, A.

Shimada, R.

Studenmund, W. R.

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Suh, K. Y.

K. Y. Suh, Small 2, 832 (2006).
[CrossRef] [PubMed]

Sykes, E. C. H.

Taflove, A.

Takakura, Y.

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Terris, D.

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Woggon, U.

Xu, Y.

Yariv, A.

Appl. Phys. Lett.

A. V. Kanaev, V. N. Astratov, and W. Cai, Appl. Phys. Lett. 88, 111111 (2006).
[CrossRef]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Science

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483 (2003).
[CrossRef] [PubMed]

Small

K. Y. Suh, Small 2, 832 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical images of sections of chains of polystyrene spheres with mean diameter (a) 1.9 and (b) 10.1 μ m .

Fig. 2
Fig. 2

Visualization of NIMs in a locally excited chain of 2.9 μ m spheres. (a) Image obtained with the background white-light illumination. Three spheres (left) are pumped. (b) Same chain imaged without background illumination due to propagation and scattering of light originating from the FL source. To display weak intensities we used a color bar (0–900 counts). The maximum intensity from excited spheres (to the left from the 0 mark) is about 3500. (c) Cross-sectional FWHM of bright spots measured in unexcited spheres perpendicular to the chain.

Fig. 3
Fig. 3

Intensity maxima of scattered light measured in a sequence of nonexcited spheres along the chain. The data are normalized on the intensity of the first maximum (position 1 in Fig. 2). The size of the spheres in chains: (a) 1.9 , (b) 2.9 , (c) 10.1 μ m . Different curves represent cases with different number of excited spheres in the FL source region. The red curve in (a) is the simulation of 10 spheres source as a superposition of 10 consecutively shifted attenuation curves measured from a single sphere source.

Fig. 4
Fig. 4

Fit parameters of double-exponential model [Eq. (1)] found in the case of a single sphere excited in chains of spheres of the following sizes: (a) 1.9 , (b) 2.2 , (c) 2.9 , (d) 5.0 , and (e) 10.1 μ m . The horizontal axis represents attenuation per sphere β 1 (solid rhombs) and β 2 (empty circles) for two exponential components. The vertical axis displays relative decay amplitudes I 1 β 1 and I 2 β 2 of these components. The inset in (a) shows weighted residuals (WR) of the fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 10 0.1 β 1 N + I 2 10 0.1 β 2 N ,

Metrics