Abstract

We show through numerical simulations that silicon waveguides can be used to create a supercontinuum extending over 400nm by launching femtosecond pulses as higher-order solitons. The physical process behind continuum generation is related to soliton fission, self-phase modulation, and generation of Cherenkov radiation. In contrast with optical fibers, stimulated Raman scattering plays little role. As low-energy (1pJ) pulses and short waveguides (<1cm) are sufficient for continuum generation, the proposed scheme should prove useful for practical applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka and R. S. Windeler, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  3. R. Claps, D. Dimitropoulos, V. Raghumathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003).
    [CrossRef] [PubMed]
  4. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
    [CrossRef] [PubMed]
  5. G. W. Rieger, K. S. Virk, and J. Young, Appl. Phys. Lett. 84, 900 (2004).
    [CrossRef]
  6. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
    [CrossRef] [PubMed]
  7. H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, Opt. Express 14, 1182 (2006).
    [CrossRef] [PubMed]
  8. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, Opt. Express 14, 4786 (2006).
    [CrossRef] [PubMed]
  9. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
    [CrossRef] [PubMed]
  10. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Opt. Express 14, 5524 (2006).
    [CrossRef] [PubMed]
  11. L. Yin, Q. Lin, and G. P. Agrawal, Opt. Lett. 31, 1295 (2006).
    [CrossRef] [PubMed]
  12. H. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
    [CrossRef]
  13. T. E. Murphy, software available at http://www.photonics.umd.edu.
  14. Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006).
    [CrossRef] [PubMed]
  15. A. Zwick and R. Carles, Phys. Rev. B 48, 6024 (1993).
    [CrossRef]
  16. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef] [PubMed]

2006

2004

2003

2000

1995

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

1993

A. Zwick and R. Carles, Phys. Rev. B 48, 6024 (1993).
[CrossRef]

1980

H. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Agrawal, G. P.

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Boyraz, O.

Carles, R.

A. Zwick and R. Carles, Phys. Rev. B 48, 6024 (1993).
[CrossRef]

Chen, X.

Claps, R.

Cohen, O.

Dimitropoulos, D.

Dulkeith, E.

Fauchet, P. M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Han, Y.

Jalali, B.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Koonath, P.

Kuo, Y.

Li, H. H.

H. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006).
[CrossRef] [PubMed]

Liu, A.

Murphy, T. E.

T. E. Murphy, software available at http://www.photonics.umd.edu.

Osgood, R. M.

Paniccia, M.

Panoiu, N. C.

Raghumathan, V.

Raghunathan, V.

Ranka, J. K.

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Rong, H.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Vlasov, Y. A.

Windeler, R. S.

Xu, Q.

Yin, L.

Young, J.

G. W. Rieger, K. S. Virk, and J. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

Zhang, J.

Zwick, A.

A. Zwick and R. Carles, Phys. Rev. B 48, 6024 (1993).
[CrossRef]

Appl. Phys. Lett.

G. W. Rieger, K. S. Virk, and J. Young, Appl. Phys. Lett. 84, 900 (2004).
[CrossRef]

J. Phys. Chem. Ref. Data

H. H. Li, J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Phys. Rev. B

A. Zwick and R. Carles, Phys. Rev. B 48, 6024 (1993).
[CrossRef]

Other

T. E. Murphy, software available at http://www.photonics.umd.edu.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Wavelength dependence of n Si (dotted curve), n eff (dashed curve), and β 2 (solid curve) for the fundamental TE mode using the waveguide shown in the inset with W = 0.8 μ m and H = 0.7 μ m .

Fig. 2
Fig. 2

(a) Temporal and (b) spectral profiles at the output of 1.2 - cm -long SOI waveguide when a 50 fs pulse propagates as a third-order soliton. The dotted curves show, for comparison, the corresponding input profiles.

Fig. 3
Fig. 3

Supercontinuum created in a 3 - mm -long SOI waveguide under the conditions of Fig. 2. The dashed curve shows the spectrum when the effects of TPA and FCA are ignored. The dotted curve shows the input pulse spectrum.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n Si 2 ( ν ) = 1 + c 1 1 ( h ν E 1 ) 2 + c 2 1 ( h ν E 2 ) 2 ,
A z = i m = 2 i m β m m ! m A t m + i γ ( 1 + i ω 0 t ) A ( z , t ) t R ( t t ) A ( z , t ) 2 d t 1 2 ( α l + α f ) A ,
γ = 2 π n 2 λ a eff + i β TPA 2 a eff ,
N c ( z , t ) t = β TPA 2 h ν 0 A ( z , t ) 4 a eff 2 N c ( z , t ) τ ,
F [ m = 2 i i m β m m ! m A t m ] = [ β ( ω ) β ( ω 0 ) β 1 ( ω 0 ) ( ω ω 0 ) ] A ̃ ( ω ) ,
Ω d 3 β 2 β 3 + γ P s β 3 3 β 2 2 ,

Metrics