Abstract

We propose a new scheme for generating radially polarized light by mimicking optical activity using linear birefringence. It involves a birefringent spirally varying retarder sandwiched between two orthogonally oriented quarter-wave plates. Using Poincaré sphere representation, we show that the polarization transformation of such a scheme is equivalent to that of a spirally varying optical activity and is capable of generating radially polarized light. We demonstrate the proof-of-concept using y-cut crystalline quartz.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  2. I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
    [CrossRef] [PubMed]
  3. J. F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, Opt. Express 14, 3304 (2006).
    [CrossRef] [PubMed]
  4. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  5. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  6. K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 31, 2151 (2006).
    [CrossRef] [PubMed]
  7. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]
  8. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  9. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  10. C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
    [CrossRef]
  11. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  12. W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, 1962).
  13. J. P. Gordon and H. Kogelnik, Phys. Rev. A 97, 4541 (2000).
  14. J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
    [CrossRef]
  15. H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

2006 (2)

2005 (1)

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (2)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

J. P. Gordon and H. Kogelnik, Phys. Rev. A 97, 4541 (2000).

1999 (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

1996 (1)

1990 (2)

1972 (1)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Biener, G.

Bisson, J. F.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Chipman, R. A.

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Dong, B. Z.

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Phys. Rev. A 97, 4541 (2000).

Gu, B. Y.

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

Gumpenberger, T.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Jackel, S.

Kawaguchi, Y.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Kimura, W. D.

Kleiner, V.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Phys. Rev. A 97, 4541 (2000).

Kozawa, Y.

Kurosaki, R.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Li, J.

McGuire, J. P.

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Meir, A.

Moshe, I.

Narazaki, A.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Niino, H.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Niu, C. H.

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Sato, S.

Sato, T.

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

Schadt, M.

Senatsky, Yu.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, 1962).

Stalder, M.

Tidwell, S. C.

Ueda, K.

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Yonezawa, K.

Zhang, Y.

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

J. Phys. D (2)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

C. H. Niu, B. Y. Gu, B. Z. Dong, and Y. Zhang, J. Phys. D 38, 827 (2005).
[CrossRef]

Opt. Eng. (1)

J. P. McGuire, Jr., and R. A. Chipman, Opt. Eng. 29, 1478 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

J. P. Gordon and H. Kogelnik, Phys. Rev. A 97, 4541 (2000).

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Other (2)

H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, J. Laser Micro/Nanoeng. 1, 39 (2006).

W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Spiral varying retarder (SVR). (b) The optical activity mimic comprises an SVR sandwiched between two orthogonally oriented quarter-wave plates.

Fig. 2
Fig. 2

Various polarization transformations with a Poincaré sphere representation: rotation (a) is a right-handed 90° rotation about {1,0,0}, which is the effect of passing the beam through QWP 1 with a horizontal slow axis. Rotation (b) is a right-handed rotation about {0,1,0} with rotation angle given by Eq. (2). This is the effect of passing the beam through SVR with a 45° slow axis. Rotation (c) is a right-handed 90° rotation about { 1 , 0 , 0 } , which is the effect of passing the beam through QWP 2 with a vertical slow axis. Rotation (d) is the net rotation of the combined rotations of ( a ) ( b ) ( c ) , which is equivalent to a rotation about { 0 , 0 , 1 } . This corresponds to having left-handed circular birefringence (or optical activity).

Fig. 3
Fig. 3

Laser beams profile observed in the far field (a) without the polarizer and with the polarizer’s transmitting axis at (b) 0°, (c) 45 ° , and (d) 45°.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

l c ( θ ) = l o g θ ,
γ θ = ( 2 π λ ) Δ n l c ( θ ) = m 2 π 2 θ .
R = r ̂ r ̂ + sin ψ ( r ̂ × ) cos ψ ( r ̂ × ) ( r ̂ × ) ,
( r 1 r 1 r 1 r 2 r 1 r 3 r 2 r 1 r 2 r 2 r 2 r 3 r 3 r 1 r 3 r 2 r 3 r 3 ) ,
( 0 r 3 r 2 r 3 0 r 1 r 2 r 1 0 ) ,
R SVR ( θ ) = ( cos 2 θ 0 sin 2 θ 0 1 0 sin 2 θ 0 cos 2 θ ) .
R mimic ( θ ) = R QWP 2 . R SVR ( θ ) . R QWP 1 = ( cos 2 θ sin 2 θ 0 sin 2 θ cos 2 θ 0 0 0 1 ) ,

Metrics