Abstract

We present a quasi-common-path laser feedback interferometer based on frequency shifting and multiplexing. The interferometer uses two acousto-optic modulators to shift the frequency of the target-generated feedback light by 2Ω. A properly aligned mirror is inserted into the feedback path to generate a feedback light frequency shifted by Ω. Phase variations of the two quasi-common-path feedback light beams are simultaneously measured through heterodyne demodulation with two different reference signals. Their subtraction accurately reflects the target displacement. Under typical room conditions, the system’s short-period resolution is better than 2nm, and its 3min displacement accuracy is 8nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).
  2. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  3. E. Lacot, R. Day, J. Pinel, and F. Stoeckel, Opt. Lett. 26, 1483 (2001).
    [CrossRef]
  4. R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
    [CrossRef]
  5. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, Opt. Lett. 27, 1339 (2002).
    [CrossRef]
  6. A. Bearden, M. P. Neil, and L. C. Osborne, Opt. Lett. 18, 238 (1993).
    [CrossRef] [PubMed]
  7. B. Ovryn and J. H. Andrews, Opt. Lett. 23, 1078 (1998).
    [CrossRef]
  8. D. Guo, M. Wang, and S. Tan, Opt. Express 13, 1537 (2005).
    [CrossRef] [PubMed]
  9. E. Lacot and O. Hugon, Phys. Rev. A 70, 053824 (2004).
    [CrossRef]
  10. C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
    [CrossRef]

2006 (1)

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

2005 (1)

2004 (1)

E. Lacot and O. Hugon, Phys. Rev. A 70, 053824 (2004).
[CrossRef]

2002 (1)

2001 (1)

1999 (2)

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

1998 (1)

1993 (1)

1963 (1)

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Abe, K.

Andrews, J. H.

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

Bearden, A.

Day, R.

Guo, D.

Hugon, O.

E. Lacot and O. Hugon, Phys. Rev. A 70, 053824 (2004).
[CrossRef]

Jiang, X.

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

King, P. G. R.

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Ko, J.-Y.

Lacot, E.

Lim, T.-S.

Lin, D.

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

Liu, Z.

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

Neil, M. P.

Osborne, L. C.

Otsuka, K.

K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, Opt. Lett. 27, 1339 (2002).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

Ovryn, B.

Pinel, J.

Steward, G. J.

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Stoeckel, F.

Tan, S.

Wang, M.

Yin, C.

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

C. Yin, D. Lin, Z. Liu and X. Jiang, Meas. Sci. Technol. 17, 596 (2006).
[CrossRef]

New Sci. (1)

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

E. Lacot and O. Hugon, Phys. Rev. A 70, 053824 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the quasi-common-path LFI. ML, microchip laser; BS, beam splitter; PD, photodiode; Lock-in: lock-in amplifier; other labels in text.

Fig. 2
Fig. 2

Power spectra of laser intensity: (a) both B1 and B3 operate; (b) with B3 blocked; (c) with B1 blocked. Horizontal, 25 kHz division ; vertical: 10 dB division .

Fig. 3
Fig. 3

(a) Phase stability test results. (b) Measurement result of PZT vibration. The bottom curve shows the PZT driving signal.

Fig. 4
Fig. 4

(a) Measured displacement of a PZT stage in a triangle waveform movement. (b) Nonlinear errors of the central 16 μ m data: upper dotted curve, Δ L m ; solid curve, Δ L f .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ I m = G ( 2 Ω ) K m cos ( 2 Ω t + P m + φ m ) ,
Δ I r = G ( Ω ) K r cos ( Ω t + P r + φ r ) ,
Δ L = ( c 2 n ω ) Δ P ,

Metrics