Abstract

Efficient operation of diode-pumped single-frequency fiber lasers at wavelengths from 1740 to 2017nm has been demonstrated by using a very short piece of newly developed single-mode active fiber, i.e., heavily thulium-doped germanate glass fiber. At 1893nm, the single-frequency fiber laser has a pump threshold of 30mW, a slope efficiency of 35%, and maximum output power of 50mW with respect to the launched power of single-mode pump diodes at 805nm. To the best of our knowledge, this is the highest lasing efficiency achieved in single-frequency fiber lasers operating near 2μm. Frequency noise of the single-frequency fiber laser at 1893nm has been characterized and compared with that of single-frequency fiber lasers at 1 and 1.55μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.
  2. Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
    [CrossRef]
  3. S. Agger, J. H. Povlsen, and P. Varming, Opt. Lett. 29, 1503 (2004).
    [CrossRef] [PubMed]
  4. L. Esterowitz, Opt. Eng. 29, 676 (1990).
    [CrossRef]
  5. R. C. Stoneman and L. Esterowitz, Opt. Lett. 15, 486 (1990).
    [CrossRef] [PubMed]
  6. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
    [CrossRef]
  7. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
    [CrossRef]
  8. N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
    [CrossRef]
  9. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).
  10. S. Jiang, C. Spiegelberg, and T. Luo, 'Single-frequency narrow linewidth 2 μm fiber laser,' U.S. patent 7,106,762 (September 12, 2006).
  11. The specified wavelength range for Agilent 86140B series is 600-1700nm. It can be extended to 350-2000nm if the wavelength limit is set to be off. However, the amplitude is not calibrated outside the 600 to 1700nm range. See the equipment manual for more details.

2006 (1)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

2005 (1)

N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
[CrossRef]

2004 (2)

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

1990 (2)

1988 (1)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Agger, S.

Barnes, N. P.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Esterowitz, L.

Geng, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Hanna, D. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Hu, Y.

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Ibsen, M.

N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
[CrossRef]

Jauncey, I. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Jiang, S.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

S. Jiang, C. Spiegelberg, and T. Luo, 'Single-frequency narrow linewidth 2 μm fiber laser,' U.S. patent 7,106,762 (September 12, 2006).

Kaneda, Y.

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Luo, T.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

S. Jiang, C. Spiegelberg, and T. Luo, 'Single-frequency narrow linewidth 2 μm fiber laser,' U.S. patent 7,106,762 (September 12, 2006).

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Percival, R. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Peyghambarian, N.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Povlsen, J. H.

Sahu, J. K.

N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
[CrossRef]

Smart, R. G.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Spiegelberg, C.

S. Jiang, C. Spiegelberg, and T. Luo, 'Single-frequency narrow linewidth 2 μm fiber laser,' U.S. patent 7,106,762 (September 12, 2006).

Spiegelberg, Ch.

Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, J. Lightwave Technol. 22, 57 (2004).
[CrossRef]

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Stoneman, R. C.

Suni, P. J.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Townsend, J. E.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Tropper, A. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

Varming, P.

Voo, N. Y.

N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
[CrossRef]

Wang, J.

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Wu, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

Electron. Lett. (1)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, Electron. Lett. 24, 1222 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Y. Voo, J. K. Sahu, and M. Ibsen, IEEE Photon. Technol. Lett. 17, 2550 (2005).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 234 (2006).

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, IEEE Trans. Geosci. Remote Sens. 31, 4 (1993).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

L. Esterowitz, Opt. Eng. 29, 676 (1990).
[CrossRef]

Opt. Lett. (2)

Other (3)

S. Jiang, C. Spiegelberg, and T. Luo, 'Single-frequency narrow linewidth 2 μm fiber laser,' U.S. patent 7,106,762 (September 12, 2006).

The specified wavelength range for Agilent 86140B series is 600-1700nm. It can be extended to 350-2000nm if the wavelength limit is set to be off. However, the amplitude is not calibrated outside the 600 to 1700nm range. See the equipment manual for more details.

Y. Kaneda, Ch. Spiegelberg, J. Geng, Y. Hu, T. Luo, J. Wang, and S. Jiang, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2004), paper CThO3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Left, forward ASE spectra (and pump laser with open circles) and laser spectra at 2017 nm (solid curve) recorded by using a monochromater and a cooled InAs detector. Right, laser spectra at 1740 nm recorded by an optical spectrum analyzer[11] (Agilent 86140B).

Fig. 2
Fig. 2

Laser output power at 1893 nm as a function of launched power.

Fig. 3
Fig. 3

Scanning spectrum over one free spectrum range of the FFPI indicating single-frequency operation of the laser.

Fig. 4
Fig. 4

Experimental setup for frequency noise measurement of the laser. HR, high reflectance; SM, single mode.

Fig. 5
Fig. 5

Frequency noise spectra of the 1893 nm laser and two reference lasers at 1550 and 1064 nm with 3 kHz linewidth.

Metrics