Abstract

It is shown that the third-order dispersion of an optical fiber can be compensated for using a time-reversal system that can be implemented with periodic time lenses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, in Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1995).
  2. H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
    [CrossRef]
  3. M. Fink, in Acoustic Imaging, B.F.Jones, ed. (Plenum, 1995), Vol. 25, pp. 1-15.
  4. D. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, Opt. Lett. 25, 132 (2000), and references therein.
    [CrossRef]
  5. A. W. Lohmann and D. Mendlovic, Appl. Opt. 31, 6212 (1992).
    [CrossRef] [PubMed]
  6. T. Jannson, Opt. Lett. 8, 232 (1983).
    [CrossRef] [PubMed]
  7. A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1998).
  8. V. Srikant, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2001, paper TuH1.

2005

H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
[CrossRef]

2000

1992

1983

Agrawal, G. P.

G. P. Agrawal, in Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1995).

Andersen, J. B.

H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
[CrossRef]

Fainman, Y.

Fink, M.

M. Fink, in Acoustic Imaging, B.F.Jones, ed. (Plenum, 1995), Vol. 25, pp. 1-15.

Ghatak, A.

A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1998).

Jannson, T.

Lohmann, A. W.

Marom, D.

Mendlovic, D.

Nguyem, H. T.

H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
[CrossRef]

Panasenko, D.

Pedersen, G. F.

H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
[CrossRef]

Rokitski, R.

Srikant, V.

V. Srikant, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2001, paper TuH1.

Sun, P.-C.

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1998).

Appl. Opt.

IEEE Commun. Lett.

H. T. Nguyem, J. B. Andersen, and G. F. Pedersen, IEEE Commun. Lett. 9, 40 (2005).
[CrossRef]

Opt. Lett.

Other

A. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1998).

V. Srikant, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2001, paper TuH1.

G. P. Agrawal, in Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1995).

M. Fink, in Acoustic Imaging, B.F.Jones, ed. (Plenum, 1995), Vol. 25, pp. 1-15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a time-reversal system. (b) Fiber-optic transmission system with time reversal. PM, phase modulator; Tx, transmitter; TF, transmission fiber; TRS, time reversal system; Rx, receiver.

Fig. 2
Fig. 2

Input and output bit sequences of a time-reversal system with guard time= 20 ps . (a) Input, (b) output.

Fig. 3
Fig. 3

lnput and output bit sequences of a time-reversal system with no guard time. (a) input, (b) output.

Fig. 4
Fig. 4

Bit sequences at the receiver of Fig. 1b with the input bit pattern that is the same as in Fig. 2a. (a) Without midpoint TRS, and (b) with midpoint TRS.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

u z = i β 2 ( z ) 2 2 u t 2 + β 3 ( z ) 6 3 u t 3 ,
u ( t , L 1 ) = 1 2 π u ̃ ( ω , 0 ) exp [ i β 3 ( 1 ) ω 3 L 1 6 i ω t ] d ω ,
u ( t , L 1 + ) = u ( t , L 1 ) , = 1 2 π u ̃ ( ω , 0 ) exp [ i β 3 ( 1 ) ω 3 L 1 6 i ω t ] d ω .
u ̃ ( ω , L 1 + ) = u ̃ ( ω , 0 ) exp [ i β 3 ( 1 ) ω 3 L 1 6 ] .
u ̃ ( ω , L 1 + L 2 ) = u ̃ ( ω , 0 ) exp { i [ β 3 ( 1 ) L 1 β 3 ( 2 ) L 2 ] ω 3 6 } .
u ( t , L 1 + L 2 ) = u ( t , 0 ) .
h ( t ) = A exp [ i ξ V ( t ) ] ,
V ( t ) = α t 2 .
F = 1 2 D ξ α .
q ( t , 2 F ) = q ̃ ( t ( 2 π D F ) , 0 ) i 2 π D F ,
q ( t , 4 F ) = i q ( t , 0 ) .
t 2 = t 1 + 2 F v g ,
h ( t ) = n = h 0 ( t n t f ) ,
h 0 ( t ) = A exp ( i ξ α t 2 ) for t < t f , = 0 elsewhere ,
q 0 ( t ) = m = 1 M a m f ( t m T b ) for t < t f t g 2 , = 0 elsewhere ,
q ( t ) = n = q 0 ( t n t f ) ,

Metrics