Abstract

On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006) ], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of parabolic bound pulses from a Yb-fiber laser

B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday
Opt. Express 14(13) 6075-6083 (2006)

Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz

Michel Olivier and Michel Piché
Opt. Express 24(3) 2336-2349 (2016)

Mechanism of solitary wave breaking phenomenon in dissipative soliton fiber lasers

Wei Lin, Simin Wang, Qilai Zhao, Weicheng Chen, Jiulin Gan, Shanhui Xu, and Zhongmin Yang
Opt. Express 23(22) 28761-28774 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription