Abstract

On the basis of superposition of beams, a group of virtual sources that generate a cosh-Gaussian wave is identified. A closed-form expression is derived for this cosh-Gaussian wave, which, in the appropriate limit, yields the paraxial approximation for the cosh-Gaussian beam. From this expression, the paraxial approximation and the nonparaxial corrections of all orders for the corresponding paraxial cosh-Gaussian beam are determined.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Casperson, D. G. Hall, and A. A. Tover, J. Opt. Soc. Am. A 14, 3341 (1997).
    [CrossRef]
  2. L. W. Casperson and A. A. Tover, J. Opt. Soc. Am. A 15, 954 (1998).
    [CrossRef]
  3. A. A. Tover and L. W. Casperson, J. Opt. Soc. Am. A 15, 2425 (1998).
    [CrossRef]
  4. G. A. Deschamps, Electron. Lett. 7, 684 (1971).
    [CrossRef]
  5. L. B. Felsen, J. Opt. Soc. Am. 66, 751 (1976).
    [CrossRef]
  6. S. Y. Shin and L. B. Felsen, J. Opt. Soc. Am. 67, 699 (1977).
    [CrossRef]
  7. A. L. Cullen and P. K. Yu, Phys. Rev. A 366, 155 (1979).
  8. C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998).
    [CrossRef]
  9. S. R. Seshadri, Opt. Lett. 27, 998 (2002).
    [CrossRef]
  10. S. R. Seshadri, Opt. Lett. 27, 1872 (2002).
    [CrossRef]
  11. S. R. Seshadri, Opt. Lett. 28, 595 (2003).
    [CrossRef] [PubMed]
  12. F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Vol. 2 (Addison-Wesley, 1969).
  13. G. C. Sherman, J. Opt. Soc. Am. 57, 546 (1967).
    [CrossRef] [PubMed]
  14. M. Couture and P.-A. Belanger, Phys. Rev. A 24, 355 (1981).
    [CrossRef]
  15. G. P. Agrawal and M. Lax, Phys. Rev. A 27, 1963 (1983).
    [CrossRef]

2003 (1)

2002 (2)

1998 (3)

1997 (1)

1983 (1)

G. P. Agrawal and M. Lax, Phys. Rev. A 27, 1963 (1983).
[CrossRef]

1981 (1)

M. Couture and P.-A. Belanger, Phys. Rev. A 24, 355 (1981).
[CrossRef]

1979 (1)

A. L. Cullen and P. K. Yu, Phys. Rev. A 366, 155 (1979).

1977 (1)

1976 (1)

1971 (1)

G. A. Deschamps, Electron. Lett. 7, 684 (1971).
[CrossRef]

1967 (1)

Agrawal, G. P.

G. P. Agrawal and M. Lax, Phys. Rev. A 27, 1963 (1983).
[CrossRef]

Belanger, P.-A.

M. Couture and P.-A. Belanger, Phys. Rev. A 24, 355 (1981).
[CrossRef]

Byron, F. W.

F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Vol. 2 (Addison-Wesley, 1969).

Casperson, L. W.

Couture, M.

M. Couture and P.-A. Belanger, Phys. Rev. A 24, 355 (1981).
[CrossRef]

Cullen, A. L.

A. L. Cullen and P. K. Yu, Phys. Rev. A 366, 155 (1979).

Deschamps, G. A.

G. A. Deschamps, Electron. Lett. 7, 684 (1971).
[CrossRef]

Felsen, L. B.

Fuller, R. W.

F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Vol. 2 (Addison-Wesley, 1969).

Hall, D. G.

Lax, M.

G. P. Agrawal and M. Lax, Phys. Rev. A 27, 1963 (1983).
[CrossRef]

R. Sheppard, C. J.

C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998).
[CrossRef]

Saghafi, S.

C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998).
[CrossRef]

Seshadri, S. R.

Sherman, G. C.

Shin, S. Y.

Tover, A. A.

Yu, P. K.

A. L. Cullen and P. K. Yu, Phys. Rev. A 366, 155 (1979).

Electron. Lett. (1)

G. A. Deschamps, Electron. Lett. 7, 684 (1971).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

Opt. Lett. (3)

Phys. Rev. A (4)

M. Couture and P.-A. Belanger, Phys. Rev. A 24, 355 (1981).
[CrossRef]

G. P. Agrawal and M. Lax, Phys. Rev. A 27, 1963 (1983).
[CrossRef]

A. L. Cullen and P. K. Yu, Phys. Rev. A 366, 155 (1979).

C. J. R. Sheppard and S. Saghafi, Phys. Rev. A 57, 2971 (1998).
[CrossRef]

Other (1)

F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Vol. 2 (Addison-Wesley, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (29)

Equations on this page are rendered with MathJax. Learn more.

E p ( ρ , 0 ) = exp [ ρ 2 w 0 2 ] cosh ( Ω 0 x ) cosh ( Ω 0 y ) ,
E p ( ρ , 0 ) = exp ( a 2 2 w 0 2 ) 4 { exp [ ( ( x a 2 w 0 ) 2 + ( y a 2 w 0 ) 2 ) ] + exp [ ( ( x + a 2 w 0 ) 2 + ( y + a 2 w 0 ) 2 ) ] + exp [ ( ( x a 2 w 0 ) 2 + ( y + a 2 w 0 ) 2 ) ] + exp [ ( ( x + a 2 w 0 ) 2 + ( y a 2 w 0 ) 2 ) ] } ,
( 2 x 2 + 2 y 2 + 2 z 2 + k 2 ) E ( ρ , z ) = S ex δ ( z z ex ) [ δ ( x b ) δ ( y b ) + δ ( x + b ) δ ( y + b ) + δ ( x b ) δ ( y + b ) + δ ( x + b ) δ ( y b ) ] ,
E ( ρ , z ) = 1 4 π 2 E ( q , z ) ¯ exp ( i ρ q ) d q ,
E ( q , z ) ¯ = E ( ρ , z ) exp ( i ρ q ) d ρ ,
E ( ρ , z ) = 1 4 π 2 exp ( i ρ q ) i S ex 2 ξ exp [ i ξ ( z z ex ) ] { exp [ i ( u + v ) b ] + exp [ i ( u + v ) b ] + exp [ i ( u v ) b ] + exp [ i ( u v ) b ] } d q
E ( ρ , z ) = 1 4 π 2 exp ( i ρ q ) i S ex 2 k exp [ i k ( z z ex ) ] exp [ i q 2 2 k ( z z ex ) ] { exp [ i ( u + v ) b ] + exp [ i ( u + v ) b ] + exp [ i ( u v ) b ] + exp [ i ( u v ) b ] } d q .
E ( ρ , z ) = S ex exp [ i k ( z z ex ) ] 4 π ( z z ex ) { exp [ i k ( x b ) 2 + ( y b ) 2 2 ( z z ex ) ] + exp [ i k ( x + b ) 2 + ( y + b ) 2 2 ( z z ex ) ] + exp [ i k ( x b ) 2 + ( y + b ) 2 2 ( z z ex ) ] + exp [ i k ( x + b ) 2 + ( y b ) 2 2 ( z z ex ) ] } .
b = a 2 ,
z ex = i k w 0 2 2 = i z 0 ,
S ex = i π z 0 exp ( a 2 2 w 0 2 k z 0 ) .
E p ( ρ , z ) = i z 0 z i z 0 exp ( a 2 2 w 0 2 + i k ( z + a 2 4 ( z i z 0 ) ) ) exp ( i k + ρ 2 2 ( z i z 0 ) ) cosh ( i k a x 2 ( z i z 0 ) ) × cosh ( i k a y 2 ( z i z 0 ) ) .
E ( ρ , z ) = z 0 4 π exp ( i ρ q ) exp ( a 2 2 w 0 2 k z 0 ) 2 ξ exp [ i ξ ( z i z 0 ) ] { exp [ i ( u + v ) a 2 ] + exp [ i ( u + v ) a 2 ] + exp [ i ( u v ) a 2 ] + exp [ i ( u v ) a 2 ] } d q .
i 2 π exp [ i k ( k 2 u 2 v 2 ) 1 2 z ] ( k 2 u 2 v 2 ) 1 2 exp [ i ( x u + v y ) ] d u d v = exp [ i k ( x 2 + y 2 + z 2 ) 1 2 ] ( x 2 + y 2 + v 2 ) 1 2 ,
exp [ i ( u x 0 + v y 0 ) ] F ( u , v ) exp [ i ( u x + v y ) ] d u d v = f ( x x 0 , y y 0 ) ,
E ( ρ , z ) = i z 0 4 exp ( a 2 2 w 0 2 k z 0 ) [ exp ( i k r 1 ) r 1 + exp ( i k r 2 ) r 2 + exp ( i k r 3 ) r 3 + exp ( i k r 4 ) r 4 ] ,
r 1 = [ ( x a 2 ) 2 + ( y a 2 ) 2 + ( z i z 0 ) 2 ] 1 2 ,
r 2 = [ ( x + a 2 ) 2 + ( y + a 2 ) 2 + ( z i z 0 ) 2 ] 1 2 ,
r 3 = [ ( x + a 2 ) 2 + ( y a 2 ) 2 + ( z i z 0 ) 2 ] 1 2 ,
r 4 = [ ( x a 2 ) 2 + ( y + a 2 ) 2 + ( z i z 0 ) 2 ] 1 2 ,
E ( ρ , z ) = E ( 0 ) ( ρ , z ) + n = 1 f 2 n E ( 2 n ) ( ρ , z ) ,
E ( 0 ) ( ρ , z ) = j = 1 4 E j ( 0 ) ( ρ , z ) ,
E ( 2 n ) ( ρ , z ) = j = 1 4 E j ( 2 n ) ( ρ , z ) ,
E j ( 0 ) ( ρ , z ) = i 4 exp ( a 2 2 w 0 2 + i k z ) Q exp ( i Q ρ j 2 ) ,
E j ( 2 n ) ( ρ , z ) = ( 1 ) n ( Q ρ j ) 2 n L n n ( i Q ρ j 2 ) E j ( 0 ) ( ρ , z ) ,
Q = ( z z 0 i ) 1 , ρ 1 2 = ( x a 2 ) 2 + ( y a 2 ) 2 w 0 2 ,
ρ 2 2 = ( x + a 2 ) 2 + ( y + a 2 ) 2 w 0 2 ,
ρ 3 2 = ( x + a 2 ) 2 + ( y a 2 ) 2 w 0 2 ,
ρ 4 2 = ( x a 2 ) 2 + ( y + a 2 ) 2 w 0 2 , j = 1 , 2 , 3 , 4 ,

Metrics