Abstract

We present cross-talk calculations for a subdiffraction nanophotonic waveguide that consists of a colloidal quantum dot (QD) array 10nm in diameter and compare the results with conventional continuous dielectric waveguides, assuming the same 10nm size as well as a 200nm cutoff diameter for guided mode. We find that the QD cascade has much lower cross talk than 10nm dielectric waveguides at an identical separation >30nm. Moreover, results for 200nm dielectric waveguides at a 280nm gap are comparable with those of QD structures spaced 110nm apart. Hence the proposed QD device is potentially superior to conventional waveguides in achieving lower cross talk in the subdiffraction regime and provides a new route to achieving high-density photonic integrated circuits.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lieber, Sci. Am. 285, 58 (2001).
    [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  3. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
    [CrossRef] [PubMed]
  5. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
    [CrossRef]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
    [CrossRef]
  7. T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
    [CrossRef] [PubMed]
  8. C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178.
    [CrossRef]
  9. C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
    [CrossRef]
  10. H. Kogelnik, in Guided-Wave Optoelectronics, 2nd ed., T.Tamir, ed. (Springer-Verlag, 1990), pp. 7-88.
    [CrossRef]
  11. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).
  12. C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
    [CrossRef] [PubMed]

2006 (1)

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
[CrossRef] [PubMed]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
[CrossRef]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

2001 (1)

C. M. Lieber, Sci. Am. 285, 58 (2001).
[CrossRef] [PubMed]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1998 (1)

1997 (1)

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Aussenegg, F. R.

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Huang, L.

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, in Guided-Wave Optoelectronics, 2nd ed., T.Tamir, ed. (Springer-Verlag, 1990), pp. 7-88.
[CrossRef]

Krenn, J. R.

Leitner, A.

Lieber, C. M.

C. M. Lieber, Sci. Am. 285, 58 (2001).
[CrossRef] [PubMed]

Lin, L. Y.

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
[CrossRef]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178.
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Morimoto, A.

Nomura, W.

T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
[CrossRef] [PubMed]

Ohtsu, M.

T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Parviz, B. A.

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
[CrossRef]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178.
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Takahara, J.

Taki, H.

Wang, C.-J.

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
[CrossRef]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178.
[CrossRef]

Yamagishi, S.

Yatsui, T.

T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
[CrossRef] [PubMed]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
[CrossRef]

Nano Lett. (2)

C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006).
[CrossRef] [PubMed]

T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Sci. Am. (1)

C. M. Lieber, Sci. Am. 285, 58 (2001).
[CrossRef] [PubMed]

Other (3)

H. Kogelnik, in Guided-Wave Optoelectronics, 2nd ed., T.Tamir, ed. (Springer-Verlag, 1990), pp. 7-88.
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).

C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing for the proposed QD waveguide.[7]

Fig. 2
Fig. 2

Atomic force micrograph images of QD waveguides. (a) 100 nm width, 200 nm edge-to-edge spacing dual QD waveguides; (b) 500 nm width, 200 nm edge-to-edge spacing dual QD waveguides.

Fig. 3
Fig. 3

Schematic drawing showing the cross-talk effect in both waveguides (WG): (a) electric field distribution in conventional waveguides, (b) Poynting vector distribution in QD waveguides, (c) schematic showing calculation of cross talk in the QD waveguides.

Fig. 4
Fig. 4

Electric field distribution for dielectric waveguides with diameters of (a) 10, (b) 150, (c) 200, (d) 300 nm . The polarization of the light is along the y direction.

Fig. 5
Fig. 5

Cross talk for the three waveguides over a distance of 10 nm . The horizontal axis represents the center-to-center distance between the waveguides.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ = k 0 2 2 β ( ϵ 1 ϵ c ) E 1 ( x , y ) E 2 * ( x , y ) d x E 1 ( x , y ) 2 d x ,
Crosstalk = 10 × log 10 sin 2 ( κ z ) .
η = S d a S d A ,

Metrics