Abstract

Broadband slow light is demonstrated by using stimulated Brillouin scattering in optical fibers based on a double Brillouin pump, the peaks of which are spectrally separated by twice the Brillouin frequency. The loss spectrum generated by one of the pump waves is fully compensated by the gain spectrum of the other one, which permits the enlargement of the bandwidth to 25GHz and a variable time delay of up to 10.9ps with 37ps pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
    [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
    [CrossRef] [PubMed]
  5. M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  6. M. G. Herráez, K. Y. Song, and L. Thévenaz, Opt. Express 14, 1395 (2006).
    [CrossRef]
  7. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.
  8. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  9. K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Lett. 30, 1782 (2005).
    [CrossRef] [PubMed]

2006 (1)

2005 (5)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Lett. 30, 1782 (2005).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Dawes, A. M. C.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Herráez, M. G.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Song, K. Y.

Thévenaz, L.

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Zhang, L.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Appl. Phys. Lett. (1)

M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Other (1)

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, in Conference on Optical Fiber Communication (OFC 2006) (Optical Society of America, 2006), paper PDP1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of gain and loss spectra in (a) single and (b) double Brillouin pumps according to narrowband (upper) and broadband (lower) operations: ν B , Brillouin frequency of fiber.

Fig. 2
Fig. 2

Experimental setup for SBS slow light with double Brillouin pump. Fiber 1 and fiber 2 represent 2 km of high-NA fiber and 6 km of dispersion-shifted fiber, respectively. LD, laser diode; EOM, electro-optic modulator; VOA, variable optical attenuator; PD, photodiode; EDFA, erbium-doped fiber amplifier; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Optical spectra of pump 1 and pump 2 with the noise modulation. Note that 21 GHz corresponds to twice the ν B of the fibers.

Fig. 4
Fig. 4

Measured gain and loss spectra for pump 1 ( P 1 ), pump 2 ( P 2 ), and the total (bold) in (a) 13 GHz pump modulation and (b) 27 GHz pump modulation. (c) Gaussian fitting results of the total spectrum in (b).

Fig. 5
Fig. 5

Time waveforms of the probe pulse according to Brillouin gain in (a) a single pulse, (b) a “101” pattern, and (c) a “10001” pattern. The initial pulse width (FWHM) is 37 ps . Note that narrow and bold curves in (b)–(c) correspond to 0 and 7.2 dB gains, respectively.

Fig. 6
Fig. 6

(a) Time delay of the probe pulse according to gain in single and double Brillouin pumps. Line graphs represent the results of linear fits. (b) Relative width (width divided by 37 ps ) of the probe pulse according to time delay. Line graphs represent the fitted results based on the linear theory, which yields bandwidths of 23 GHz for the single pump and 32.5 GHz for the double pump.

Metrics