Abstract

Intracavity gain gratings are theoretically demonstrated to exhibit diffraction efficiencies that are 100 times larger than unity at pump powers substantially below the lasing threshold. Experiments performed using a Nd:YVO4 microlaser pumped below threshold by two interfering Ti:sapphire laser beams are described. Huge enhancement of the diffraction efficiency (5000×) and a large increase of the angular selectivity (10×) are demonstrated despite the angular reduction of the Fabry–Perot cavity finesse. Much better results are expected using gain gratings with larger areas or thinner cavities such as vertical cavity surface-emitting lasers. Such large fan-out values could be very interesting for applications to optical signal processing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  2. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).
  3. L. Menez, I. Zaquine, A. Maruani, and R. Frey, J. Opt. Soc. Am. B 16, 1849 (1999).
    [CrossRef]
  4. L. Menez, I. Zaquine, A. Maruani, and R. Frey, Opt. Lett. 27, 479 (2002).
    [CrossRef]
  5. L. Menez, I. Zaquine, A. Maruani, and R. Frey, J. Opt. Soc. Am. B 19, 965 (2002).
    [CrossRef]
  6. L. Menez, I. Zaquine, A. Maruani, and R. Frey, Opt. Commun. 204, 267 (2002).
    [CrossRef]

2002 (3)

1999 (1)

1988 (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Ding, Y.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

Frey, R.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Maruani, A.

Melloch, M. R.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

Menez, L.

Nolte, D. D.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

Weiner, A. M.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

Zaquine, I.

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1988).

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

L. Menez, I. Zaquine, A. Maruani, and R. Frey, Opt. Commun. 204, 267 (2002).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated diffraction efficiency of the intracavity gain grating and amplification of the read beam plotted as a function of the ratio between the real and threshold pumping powers.

Fig. 2
Fig. 2

Experimental setup for writing and reading the gain grating, with an inset showing the sample in more detail.

Fig. 3
Fig. 3

Measured diffraction efficiency of the intracavity gain grating (a) and amplification of the read beam (b) plotted as a function of the ratio between the real and threshold pump powers (squares). The solid curves correspond to calculations performed using Eqs. (1, 2) and a reduced value of R 1 (see text).

Fig. 4
Fig. 4

Normalized intensities of the diffracted and transmitted beams plotted as a function of the detuning angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ = ( 1 R 1 ) 2 R 2 sinh 2 ( 2 ξ ) [ 1 + R 1 R 2 2 R 1 R 2 cosh ( 2 ξ ) ] 2 ,
A = exp ( x g 0 L ) [ 1 + R 1 R 2 2 R 1 R 2 ] 1 + R 1 R 2 2 R 1 R 2 ,

Metrics