Abstract

We construct field shapes with distinct amplitude profiles that have nearly identical second-harmonic generation frequency-resolved optical gating (SHG FROG) traces. Although such fields are not true mathematical ambiguities, they result in experimentally indistinguishable FROG traces. These fields are neither time-reversed copies nor pulselets with a mere relative phase difference, which are well known nontrivial ambiguities for SHG FROG. We also show that for certain example fields, second-order interferometric autocorrelation is more sensitive to the pulse shape than is SHG FROG.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Balakishore Yellampalle, KiYong Kim, and Antoniette J. Taylor, "Amplitude ambiguities in second-harmonic generation frequency-resolved optical gating: erratum," Opt. Lett. 33, 2854-2854 (2008)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-33-23-2854

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  2. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, Opt. Lett. 18, 1946 (1993).
    [CrossRef] [PubMed]
  3. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
    [CrossRef]
  4. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
    [CrossRef]
  5. G. Stibenz and G. Steinmeyer, Opt. Express 13, 2617 (2005).
    [CrossRef] [PubMed]
  6. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  7. R. Trebino, Frequency Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
    [CrossRef]
  8. D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, J. Opt. Soc. Am. B 20, 2226 (2003).
    [CrossRef]
  9. G. Steinmeyer, J. Opt. A 5, R1 (2003).
    [CrossRef]
  10. C. Yan and J. C. Diels, J. Opt. Soc. Am. B 8, 1259 (1991).
    [CrossRef]
  11. D. A. Bender, M. P. Hasselback, and M. Sheik-Bahae, Opt. Lett. 31, 122 (2006).
    [CrossRef] [PubMed]
  12. E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
    [CrossRef]
  13. C. W. Siders, A. J. Taylor, and M. C. Downer, Opt. Lett. 22, 624 (1997).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

2003 (2)

2002 (1)

E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
[CrossRef]

2001 (1)

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

C. W. Siders, A. J. Taylor, and M. C. Downer, Opt. Lett. 22, 624 (1997).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

1991 (1)

Bender, D. A.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
[CrossRef]

Diels, J. C.

Downer, M. C.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fujimoto, J. G.

Gu, X.

Hasselback, M. P.

Hunter, J.

Ippen, E. P.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

Keusters, D.

Kimmel, M.

E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
[CrossRef]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

O'Shea, P.

Paye, J.

Ramaswamy, M.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Sheik-Bahae, M.

Shreenath, A. P.

E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
[CrossRef]

Siders, C. W.

Steinmeyer, G.

Stibenz, G.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tan, H. S.

Taylor, A. J.

Trebino, R.

D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, J. Opt. Soc. Am. B 20, 2226 (2003).
[CrossRef]

E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
[CrossRef]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
[CrossRef]

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

R. Trebino, Frequency Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
[CrossRef]

Warren, W. S.

White, W. E.

Yan, C.

Zeek, E.

D. Keusters, H. S. Tan, P. O'Shea, E. Zeek, R. Trebino, and W. S. Warren, J. Opt. Soc. Am. B 20, 2226 (2003).
[CrossRef]

E. Zeek, A. P. Shreenath, P. O'Shea, M. Kimmel, and R. Trebino, Appl. Phys. B 74, S265 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Example 1: (a), (b) two distinct electric field envelopes and (c), (d) the corresponding SHG-FROG traces. (e) Normalized difference between the two FROG traces. For the two pulses, Δ m = 0.004 % and Δ e = 3.8 × 10 10 .

Fig. 2
Fig. 2

(a) IAC trace for the first field, E a ( t ) , in Example 1. (b) Difference between the IAC traces of E a ( t ) and E b ( t ) of Example 1. The maximum difference is 2.9%.

Fig. 3
Fig. 3

Example 2: (a), (b) magnitudes of electric field envelopes. (c), (d) SHG FROG traces for the fields in (a) and (b). (e) Normalized difference between the two FROG traces. For the two pulses, Δ m = 1.9 % and Δ e = 7 × 10 6 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I FROG ( Ω , τ ) = E ( t ) E ( t τ ) e i Ω t d t 2 .
E a , b ( t ) = S a 1 , b 1 E 0 ( t T ) + S a 2 , b 2 E 0 ( t + T ) .
I x FROG = S x 1 2 f + S x 2 2 f + + + S x 1 S x 2 ( f + + f + ) 2 .
f + + ( Ω , τ ) = f ( Ω , τ ) = f 00 ( Ω , τ ) ,
f ± ( Ω , τ ) = f 00 ( Ω , τ ± T ) .

Metrics