Abstract

We propose and demonstrate novel virtual Gires–Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
    [CrossRef]
  2. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
    [CrossRef]
  3. X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
    [CrossRef] [PubMed]
  4. X. Shu, K. Sugden, and I. Bennion, Opt. Lett. 31, 2263 (2006).
    [CrossRef] [PubMed]
  5. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
    [CrossRef]
  6. K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, Opt. Express 11, 1029 (2003).
    [CrossRef] [PubMed]

2006 (1)

2003 (3)

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

X. Shu, K. Sugden, and K. Byron, Opt. Lett. 28, 881 (2003).
[CrossRef] [PubMed]

K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, Opt. Express 11, 1029 (2003).
[CrossRef] [PubMed]

2002 (1)

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

1991 (1)

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Bennion, I.

Buryak, A.

Byron, K.

Cimini, L.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Colbourne, P.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Giles, C.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Gnauck, A.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Hulse, C. A.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Kiran, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Kolossovski, K.

Korotky, S.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Lamont, M.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Li, H.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Li, Y.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

McLaughlin, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Moss, D. J.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Popelek, J.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Randall, G.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Sammut, R.

Sheng, Y.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Shu, X.

Stepanov, D.

Stone, J.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Stulz, L.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Sugden, K.

Veselka, J.

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

Wang, Y.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Wilcox, R. B.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Zweiback, J.

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Gnauck, C. Giles, L. Cimini, J. Stone, L. Stulz, S. Korotky, and J. Veselka, IEEE Photon. Technol. Lett. 3, 1147 (1991).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, IEEE Photon. Technol. Lett. 15, 730 (2003).
[CrossRef]

J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, IEEE Photon. Technol. Lett. 14, 1309 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a virtual GT etalon created by phase-modulation approach. The seed grating has wide reflection band and the phase encoded structure is equal to a set of virtual reflectors spread in spatial domain, which are also spectrally overlapping in frequency domain. R 0 has reflectivity of close to 100%. The negative order reflectors are not plotted.

Fig. 2
Fig. 2

Design of a VGTE with the phase-modulation approach. (a) Designed phase profile in a period. (b) Fourier amplitude of the phase-modulation function S P M ( z ) . (c) Calculated group delay and dispersion spectra.

Fig. 3
Fig. 3

Measurement results for the fabricated VGTEs. (a) Transmission spectra of two VGTEs with different strength. (b) GD response of two VGTEs corresponding to (a). (c) Dependence of GD amplitude on etalon strength. (d) and (e) are the selected best and worst channel with quadratic fits (thin curves) for the bottom curve shown in (b). (f) GD response of a VGTE measured from two launch ends. (g) Dispersion response from two launch ends.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 ( z ) + Re ( Δ n ( z ) 2 exp [ i ( k g 0 z + ϕ g ( z ) ] ( N A N exp ( i N k S z ) ) ,
A N = 1 P 0 P S P M ( z ) exp ( i 2 N π z P ) d z .
S P M ( z ) = exp [ i ϕ S ( z ) ] ,
ϕ S ( z ) = N m N sin ( N k S z ) .

Metrics