Abstract

A superresolving three-zone plate is applied to a Fresnel diffractive lens. It is shown that for radial incident polarization this combination produces a focal spot approaching superresolution allowed subdiffractive limit of 0.36λNA for focusing. For media responsive to longitudinal field component only, our phase engineering scheme results in a focal spot size of 0.368λNA. When used with a solid immersion lens, the scheme can generate the smallest focal spot available for passive optics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413 (1873).
    [CrossRef]
  2. Lord Rayleigh, Mon. Not. R. Astron. Soc. 33, 59 (1872).
  3. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  4. G. Toraldo di Francia, Nuovo Cimento, Suppl. 9, 426 (1952).
    [CrossRef]
  5. T. R. M. Sales, Phys. Rev. Lett. 81, 3844 (1998).
    [CrossRef]
  6. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef] [PubMed]
  7. L. E. Helseth, Opt. Commun. 191, 161 (2001).
    [CrossRef]
  8. C. Liu and S.-H. Park, Opt. Lett. 29, 1742 (2004).
    [CrossRef] [PubMed]
  9. Y. Xu, J. Singh, C. J. R. Sheppard, and N. Chen, Opt. Express 15, 6409 (2007).
    [CrossRef] [PubMed]
  10. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
    [CrossRef]
  11. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  12. T. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).
    [CrossRef] [PubMed]
  13. C.-C. Sun and C.-K. Liu, Opt. Lett. 28, 99 (2003).
    [CrossRef] [PubMed]
  14. N. Davidson and N. Bokor, Opt. Lett. 29, 1318 (2004).
    [CrossRef] [PubMed]
  15. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, and J. O. White, J. Opt. Soc. Am. A 21, 1186 (2004).
    [CrossRef]
  16. S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
    [CrossRef]
  17. I. Golub, Opt. Lett. 32, 2161 (2007).
    [CrossRef] [PubMed]
  18. T. G. Jabbour and S. M. Kuebler, Opt. Express 14, 1033 (2006).
    [CrossRef] [PubMed]
  19. K. S. Youngwotrh and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef]

2007 (3)

2006 (1)

2004 (4)

2003 (2)

C.-C. Sun and C.-K. Liu, Opt. Lett. 28, 99 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2001 (1)

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

2000 (1)

1998 (1)

T. R. M. Sales, Phys. Rev. Lett. 81, 3844 (1998).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

1952 (1)

G. Toraldo di Francia, Nuovo Cimento, Suppl. 9, 426 (1952).
[CrossRef]

1873 (1)

E. Abbe, Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413 (1873).
[CrossRef]

1872 (1)

Lord Rayleigh, Mon. Not. R. Astron. Soc. 33, 59 (1872).

Abbe, E.

E. Abbe, Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413 (1873).
[CrossRef]

Bainier, C.

Bokor, N.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Brown, T. G.

Brunner, R.

Burkhardt, M.

Chen, N.

Choudhury, A.

Courjon, D.

Davidson, N.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Ferstl, M.

Golub, I.

Grosjean, T.

Helseth, L. E.

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Hohng, S.

Jabbour, T. G.

Kino, G. S.

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Kuebler, S. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Liu, C.

Liu, C.-K.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Park, S.-H.

Pesch, A.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rayleigh, Lord

Lord Rayleigh, Mon. Not. R. Astron. Soc. 33, 59 (1872).

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Sales, T. R. M.

T. R. M. Sales, Phys. Rev. Lett. 81, 3844 (1998).
[CrossRef]

Sandfuchs, O.

Sheppard, C. J. R.

Singh, J.

Sun, C.-C.

Toraldo di Francia, G.

G. Toraldo di Francia, Nuovo Cimento, Suppl. 9, 426 (1952).
[CrossRef]

White, J. O.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Xu, Y.

Youngwotrh, K. S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Arch. Mikrosc. Anat. Entwicklungsmech. (1)

E. Abbe, Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413 (1873).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mon. Not. R. Astron. Soc. (1)

Lord Rayleigh, Mon. Not. R. Astron. Soc. 33, 59 (1872).

Nuovo Cimento, Suppl. (1)

G. Toraldo di Francia, Nuovo Cimento, Suppl. 9, 426 (1952).
[CrossRef]

Opt. Commun. (1)

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

T. R. M. Sales, Phys. Rev. Lett. 81, 3844 (1998).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A (1)

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized focal spot FWHM × NA (in units of wavelength) for a lens with a three-zone plate versus first and second zone angles for α = 80 ° , β = 1 . Inset, axial (above) and transverse profiles (below) of the total intensity for the minimum FWHM × NA = 0.413 λ at θ 1 = 25 ° , θ 2 = 42 ° (solid curves) and for the lens only with FWHM × NA = 0.584 λ (dashed curves).

Fig. 2
Fig. 2

Normalized FWHM × NA versus pupil-waist ratio β for an FZP with M = 100 (thick curve) and a lens (thin curve) at α = 80 ° , 70°, and 50° (solid, dashed, and dotted curves, respectively). Diffraction limit FWHM × NA = 0.36 λ is shown by a horizontal dotted line.

Fig. 3
Fig. 3

(a) Normalized focal spot FWHM × NA (in units of wavelength) for an FZP with a three-zone plate versus first and second zone angles of a three-zone plate for M = 100 , α = 80 ° , and β = 1 . (b) Axial and (c) transverse profiles of the total intensity for the minimum FWHM × NA = 0.378 λ at θ 1 = 35 ° and θ 2 = 54 ° (solid curves) and for an FZP only with FWHM × NA = 0.425 λ (dashed curves).

Fig. 4
Fig. 4

Normalized FWHM × NA of the focal spot of longitudinal intensity component (solid curve) and total intensity (dashed curve) for an FZP with a three-zone plate versus second zone angles of a three-zone plate for M = 100 , α = 80 ° , β = 1 , and θ 1 = 35 ° .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ E r E z ] 0 α A ( θ ) B ( θ ) [ sin θ cos θ J 1 ( k r sin θ ) i sin 2 θ J 0 ( k r sin θ ) ]
× exp [ i k z cos θ + i ϕ ( θ ) ] d θ ,

Metrics