Abstract

We report on a high-speed, high-efficiency, high-duty-cycle, path-length-maintaining and linear beam scanner suitable for en face scanning optical coherence microscopy. Fast transverse beam scanning is achieved by use of a double-reflection polygon mirror (DRPM) rotating at a constant speed. With a motor speed of 18,000rpm and a scanner diameter of 50mm, the DRPM provides a line rate up to 3kHz, ±1.8° scanning range, and 90% duty cycle. A much higher scanning speed and much larger scanning range can be readily achieved by increasing the scanner diameter.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
    [CrossRef]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
    [CrossRef]
  3. L. Liu and N. G. Chen, Appl. Opt. 45, 5426 (2006).
    [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 24, 1221 (1999).
    [CrossRef]
  5. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, Opt. Lett. 32, 2375 (2007).
    [CrossRef] [PubMed]
  6. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, Appl. Opt. 38, 2105 (1999).
    [CrossRef]
  7. M. Petran and M. Hadravsky, J. Opt. Soc. Am. 58, 661 (1968).
    [CrossRef]
  8. A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
    [CrossRef]
  9. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, Opt. Lett. 28, 2064 (2003).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, Opt. Lett. 28, 2064 (2003).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

1996 (1)

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

1968 (1)

Aguirre, A. D.

Anderson, R. R.

Boppart, S. A.

Brackenhoff, G. J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Buist, A. H.

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Chen, N.

Chen, N. G.

Drexler, W.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Fujimoto, J. G.

Hadravsky, M.

Hartl, I.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Howe, W. C.

Hsiung, P.

Ippen, E. P.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Kartner, F. X.

Ko, T. H.

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Li, X. D.

Liu, C.

Liu, L.

Morgner, U.

Muller, M.

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Petran, M.

Pitris, C.

Rajadhyaksha, M.

Sheppard, C. J. R.

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Squier, J.

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

Wang, H. W.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Webb, R. H.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, Jr., IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

J. Microsc. (1)

A. H. Buist, M. Muller, J. Squier, and G. J. Brackenhoff, J. Microsc. 192, 217 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structure of the DRPM. (b) Transverse sketch of the beam scanning. Lower circled cross (black), incident beam; upper-right circled cross (red online), doubly reflected beam when t = 0 ; upper-left cross (blue online), doubly reflected beam when t = Δ t . (c) Trace of beam scanning (dotted curve, green online) in the front principal plane of the tube lens.

Fig. 2
Fig. 2

OCM used for imaging experiments. OC, optical circulator; PCP, polarization control paddles; PM, fiber-based phase modulator; RM, reference mirror; FG, function generator; L5, lens; FSM, fast steering mirror; PD1, photodetector 1; LD, 650 nm laser diode; PD2, photodetector 2; DAQ, data acquisition device; PC, personal computer.

Fig. 3
Fig. 3

(a) Heterodyne modulation signal. (b) Image of a U.S. Air Force resolution target.

Fig. 4
Fig. 4

Cellular structure of an onion skin at a probing depth of 110 μ m . Scale bar, 50 μ m .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n = M ω n 0 = [ cos ω t sin ω t 0 sin ω t cos ω t 0 0 0 1 ] [ cos δ 0 sin δ ] = [ cos δ cos ω t cos δ sin ω t sin δ ] ,
M ω = [ cos ω t sin ω t 0 sin ω t cos ω t 0 0 0 1 ] .
d = [ sin 2 δ cos ω t sin 2 δ sin ω t 2 sin 2 δ 1 ] T .
Δ l ( t ) = ( R r ) ω t .
± Δ A = ± arctan [ ( R r ) θ ( 2 × TL ) ] ,
Δ ρ ( t ) = Δ l M = 1 M ( R r ) ω t ,
P = R r d n = R r sin δ ;
P z = P cos 2 δ .

Metrics