Abstract

We describe Fourier domain optical coherence tomography equipped with a novel linear-in-wavenumber spectrometer. The presented device linearizes the spectral dispersion of the spectrometer in wavenumber using a specifically designed prism. The spectral linearity in wavenumber makes numerical interpolation into wavenumber unnecessary, reduces computing time, and furthermore results in improvement of the falloff of signal with image range inherent to frequency-domain optical coherence tomography imaging. Experiments demonstrate the improvement of the falloff and agree with the expected results from simulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
    [CrossRef]
  2. J. F. d. Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, Opt. Lett. 28, 2067 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003).
    [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Opt. Express 11, 2183 (2003).
    [CrossRef] [PubMed]
  5. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, J. Opt. Soc. Am. A 24, 1327 (2007).
    [CrossRef]
  6. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, Opt. Express 15, 7103 (2007).
    [CrossRef] [PubMed]
  7. Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. doc. ID 82355 (posted 30 October 2007, in press).
  8. W. A. Traub, J. Opt. Soc. Am. A 7, 1779 (1990).
    [CrossRef]

2007 (2)

2003 (3)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

1990 (1)

Bigelow, C. E.

Bloom, B.

Boer, J. F. d.

Bouma, B. E.

Cense, B.

Choma, M. A.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Ferguson, R. D.

Hammer, D. X.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Hu, Z.

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. doc. ID 82355 (posted 30 October 2007, in press).

Iftimia, N. V.

Itoh, M.

Izatt, J. A.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Leitgeb, R.

Makita, S.

Nakamura, Y.

Pan, Y.

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. doc. ID 82355 (posted 30 October 2007, in press).

Park, B. H.

Pierce, M. C.

Rollins, A. M.

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. doc. ID 82355 (posted 30 October 2007, in press).

Sarunic, M. V.

Tearney, G. J.

Traub, W. A.

Ustun, T. E.

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of linear-k spectrometer illuminated by three colors K 1 , K 2 , and K 3 . K 2 , center wavenumber; G, diffractive grating; θ, diffraction angle; P, prism; θ i , incident angle on prism; θ o , dispersion angle out of prism; α, prism base angle; L, objective lens; A, detector array.

Fig. 2
Fig. 2

Derivatives of output angles from grating (θ, representing the conventional spectrometer) and grating + prism ( θ 0 , representing the linear-k spectrometer) with respect to the wavenumber as a function of wavenumber k.

Fig. 3
Fig. 3

Falloff simulations and experiments for (a) conventional and (b) linear-k spectrometers at spectrometer optical resolutions of 12.5 μ m (triangle) and 35 μ m (cross and diamond). Experimentally measured falloff marked by diamonds. Arrows mark experimentally determined 6 dB falloff ranges.

Fig. 4
Fig. 4

Images of six-layer tape phantom using (a) conventional spectrometer and (b) linear-k spectrometer. Vertical axis is in micrometers; horizontal axis is an A-scan index. Last 50 A scans from (a) and (b) are averaged and shown in (c). In (c), A, air above sample; AT, air to tape interface; N, first layer (normalized for display); G, glue between layers; GA, glue to air interface. Thin trace represents conventional spectrometer; thick trace represents linear-k spectrometer.

Fig. 5
Fig. 5

In-vivo human finger imaged by FDOCT equipped with linear-k spectrometer. Vertical and horizontal scales are in micrometers A-scan number.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ o ( λ ) = sin 1 ( sin ( 2 α ) n ( λ ) 2 sin ( θ i ) 2 + sin ( θ i ) cos ( 2 α ) ) ,
θ i ( λ ) = sin 1 ( n ( λ c ) cos ( α ) ) + sin 1 ( μ λ 0.5 μ λ c ) sin 1 ( 0.5 μ λ c ) .

Metrics