Abstract

A new scheme for a birefringent nonlinear polarization rotation mirror is proposed for pedestal suppression of ultrashort pulses. Environmentally stable and precisely controllable operation is demonstrated. The main pulse and pedestal components are separated and picked out from the different ports. By use of the soliton effect and nonlinear polarization rotation, almost transform-limited pedestal-free 318 and 143fs ultrashort pulses with peak powers of 0.9 and 1.7kW are successfully generated. The maximum pedestal-suppression ratio is 24dB, and the pick-out efficiency is up to 46% including coupling loss. The characteristics are analyzed both experimentally and numerically.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, Opt. Express 12, 317 (2004).
    [CrossRef] [PubMed]
  2. J. Takayanagi and N. Nishizawa, Jpn. J. Appl. Phys. 45, L441 (2006).
    [CrossRef]
  3. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, Opt. Express 12, 3025 (2004).
    [CrossRef] [PubMed]
  4. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
    [CrossRef]
  5. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  6. N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
    [CrossRef]
  7. N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1998).
    [CrossRef]
  8. R. Yatsu, K. Taira, and M. Tsuchiya, Opt. Lett. 24, 1172 (1999).
    [CrossRef]
  9. K. Tamura and K. Sato, Opt. Lett. 27, 1268 (2002).
    [CrossRef]
  10. R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]
  11. B. Nikolaus, D. Grischkowsky, and A. C. Balant, Opt. Lett. 8, 189 (1983).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinera Fiber Optics, 3rd ed. (Academic, 2001).

2006 (1)

J. Takayanagi and N. Nishizawa, Jpn. J. Appl. Phys. 45, L441 (2006).
[CrossRef]

2005 (1)

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

2004 (2)

2002 (1)

1999 (2)

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

R. Yatsu, K. Taira, and M. Tsuchiya, Opt. Lett. 24, 1172 (1999).
[CrossRef]

1998 (1)

1986 (1)

1983 (1)

1982 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinera Fiber Optics, 3rd ed. (Academic, 2001).

Ashkin, A.

Balant, A. C.

Botineau, J.

Doran, N. J.

Feder, K. S.

Goto, T.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, Opt. Express 12, 317 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Grischkowsky, D.

Hori, T.

Mitschke, F. M.

Mollenauer, L. F.

Nagai, H.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

Nicholson, J. W.

Nikolaus, B.

Nishizawa, N.

J. Takayanagi and N. Nishizawa, Jpn. J. Appl. Phys. 45, L441 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, Opt. Express 12, 317 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Sato, K.

Stolen, R. H.

Taira, K.

Takayanagi, J.

J. Takayanagi and N. Nishizawa, Jpn. J. Appl. Phys. 45, L441 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, Opt. Express 12, 317 (2004).
[CrossRef] [PubMed]

Tamura, K.

Tsuchiya, M.

Westbrook, P. S.

Wood, D.

Yablon, A. D.

Yan, M. F.

Yatsu, R.

Yoshida, M.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, IEEE Photon. Technol. Lett. 17, 37 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of birefringent nonlinear polarization rotation mirror: PBS, polarization beam splitter; FR, Faraday rotator; PMF, polarization maintaining fiber; M, mirror.

Fig. 2
Fig. 2

(a) Temporal shape and phase and (b) spectrum and phase of input pulses. The dashed curve shows the temporal shape of the pedestal-free sech 2 pulse.

Fig. 3
Fig. 3

Numerical results, peak intensity map of output pulse. The dashed curves show the periodic peak curves for phase differences (A) Δ ϕ = π and (B) Δ ϕ = 3 π .

Fig. 4
Fig. 4

Characteristics of output pulses as a function of fiber length. The squares and circles show the peak intensity and the fraction of pedestal, respectively. The dashed curve shows the numerical results.

Fig. 5
Fig. 5

Characteristics of output pulse when 5.5 m of PMF1 was used: (a) temporal shapes on linear and log scale, (b) spectral shape. The dashed curves show the phase, and the dotted curve shows the separated pedestal component.

Fig. 6
Fig. 6

Characteristics of output pulse when 1.0 m of PMF2 was used: (a) temporal shapes on linear and log scale, (b) spectral shape. The dashed curves show the phase, and the dotted curve shows the separated pedestal component.

Metrics