Abstract

A novel photonic crystal fiber featured by concentric cores is proposed to induce dispersion controllability by photosensitivity. Chromatic dispersion can be changed from 1827 to 72psnmkm with refractive index modulation of 4×104 produced in Ge-doped regions in the fiber. Effective mode area of inner mode is as small as 6.4μm2. The proposed fiber enables to achieve quasi-phase-matched nonlinear parametric interaction in a single piece of photonic crystal fiber, by periodically alternating dispersion and compensating for phase mismatching caused by the dispersion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight and P. St. J. Russell, Science 296, 276 (2002).
    [CrossRef] [PubMed]
  2. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Opt. Lett. 27, 1675 (2002).
    [CrossRef]
  3. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 30, 762 (2005).
    [CrossRef] [PubMed]
  4. M. E. Mahric, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef]
  5. M. Karlsson, J. Opt. Soc. Am. B 15, 2269 (1998).
    [CrossRef]
  6. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Express 14, 9491 (2006).
    [CrossRef] [PubMed]
  7. M. E. Marhic, F. S. Yang, M. C. Ho, and L. G. Kazovsky, J. Lightwave Technol. 17, 210 (1999).
    [CrossRef]
  8. J. Kim, O. Boyraz, J. H. Lim, and M. Islam, J. Lightwave Technol. 19, 247 (2001).
    [CrossRef]
  9. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  10. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 19, 2331 (2002).
    [CrossRef]
  11. U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
    [CrossRef]
  12. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
    [CrossRef]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, Opt. Lett. 24, 1460 (1999).
    [CrossRef]
  14. V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mélin, A. Fleureau, S. Lempereur, and L. Gasca, Appl. Opt. 45, 8186 (2006).
    [CrossRef] [PubMed]
  15. S. G. Murdoch, R. Leonhardt, J. D. Harvey, and T. A. B. Kennedy, J. Opt. Soc. Am. B 14, 1816 (1997).
    [CrossRef]
  16. L. M. Lee, S. C. Pei, D. F. Lin, P. C. Chiu, M. C. Tsai, T. M. Tai, D. H. Sun, A. H. Kung, and S. L. Huang, J. Opt. Soc. Am. B 24, 1909 (2007).
    [CrossRef]

2007 (1)

2006 (2)

2005 (1)

2004 (1)

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

2002 (4)

2001 (1)

1999 (2)

1998 (1)

1997 (1)

1996 (1)

1995 (1)

U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
[CrossRef]

An, L.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

Beugin, V.

Bigot, L.

Botten, L. C.

Boyraz, O.

Chen, A. Y. H.

Chen, J. S. Y.

Chiang, T.-K.

Chiu, P. C.

de Sterke, C. M.

Douay, M.

Eggleton, B. J.

Fan, C.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

Fiorentino, M.

Fleureau, A.

Gasca, L.

Harvey, J. D.

Ho, M. C.

Huang, S. L.

Islam, M.

Kagi, N.

Karlsson, M.

Kazovsky, L. G.

Kennedy, T. A. B.

Kim, J.

Knight, J. C.

Kuhlmey, B. T.

Kumar, P.

Kung, A. H.

Lancry, M.

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
[CrossRef]

Lee, L. M.

Lempereur, S.

Leonhardt, R.

Lim, J. H.

Lin, D. F.

Mahric, M. E.

Marhic, M. E.

Maystre, D.

McPhedran, R. C.

Mélin, G.

Murdoch, S. G.

Ni, Y.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

Niay, P.

Pei, S. C.

Peng, J.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
[CrossRef]

Quiquempois, Y.

Renversez, G.

Russell, P. St. J.

Sharping, J. E.

Spälter, S.

Strasser, T. A.

Sun, D. H.

Tai, T. M.

Tsai, M. C.

Wadsworth, W. J.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

Wong, G. K. L.

Yang, F. S.

Zhang, L.

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

U. Peschel, T. Peschel, and F. Lederer, Appl. Phys. Lett. 67, 2111 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (5)

Opt. Express (1)

Opt. Lett. (4)

Science (1)

J. C. Knight and P. St. J. Russell, Science 296, 276 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structure of the proposed holey fiber. Two concentric cores are formed. Ge-doped regions (dashed-line circles) are placed in outer core. (b) Mode field distributions of outer and inner modes for x- and y- polarization states, respectively.

Fig. 2
Fig. 2

Dispersions of the symmetric mode, with and without index modulation of 4 × 10 4 . Dispersion peak is shifted from 1.574 to 1.548 μ m .

Fig. 3
Fig. 3

Dispersion peak wavelength and maximum dispersion are examined as functions of the index modulation.

Fig. 4
Fig. 4

Dispersion peak wavelength and maximum dispersion are examined as functions of the diameter d 2 of large air holes.

Fig. 5
Fig. 5

Proposed quasi-phase-matching scheme in holey fiber based on periodic dispersion compensation. Dark regions have the modulated refractive index.

Metrics