Abstract

The feasibility of surface plasmon resonance (SPR) imaging thermometry is tested as a potential tool for full-field and real-time temperature field mapping for thermally transient liquid mediums. Using the well-known Kretschmann’s analysis [Physik 241, 313 (1971) ]. parametric examinations are performed to delineate the effects of important optical properties, including seven different prism materials with different refractive index values and seven different measured dielectric constants for thin gold (Au) films (approximately 47.5nm in thickness), on the temperature dependence of SPR reflectance intensity variations. Furthermore, a laboratory-implemented real-time SPR thermometry system demonstrates the full-field mapping capabilities for transient temperature field developments in the near-wall region when a hot water droplet (80°C) contacts the Au metal surface (20°C) and spreads either in an air- or in a water-surrounded environment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
    [CrossRef]
  2. H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
    [CrossRef]
  3. B. Chadwick and M. Gal, Jpn. J. Appl. Phys. 32, 2716 (1993).
    [CrossRef]
  4. S. K. Ozdemir and G. Turhan-Sayan, J. Lightwave Technol. 21, 805 (2003).
    [CrossRef]
  5. A. K. Sharma and B. D. Gupta, Opt. Fiber Technol. 12, 87 (2006).
    [CrossRef]
  6. J. Zeng, D. Liang, and Z. Cao, Proc. SPIE 5855, 667 (2005).
    [CrossRef]
  7. E. Z. Kretschmann, Physik 241, 313 (1971).
    [CrossRef]
  8. H. P. Chaing, P. T. Leung, and W. S. Tse, J. Chem. Phys. 108, 2659 (1998).
    [CrossRef]
  9. ωp=ωp0[1+3γ(T−T0)]−1/2, where ωp0 is the plasma frequency at reference temperature T0 and γ is the thermal linear expansion coefficient of thin metal film.
  10. ωc=ωcp+ωce, where the photon-electron scattering frequency is defined as ωcp(T)=ω0[2/5+4(T/TD)5]∫0TD/Tz4/ez−1dz and the electron-electron scattering frequency is ωce(T)=1/6π4ΓΔ/hEF[(kBT)2+(hω/4π2)2]. Parametric values used for calculations throughout are constant coefficient ω0=1.438×10−14 rad/s, Debye temperature TD=170 K, Fermi energy EF=5.53 eV, Boltzmann constant kB=1.3807×10−23 J/K, and scattering probability Γ=0.55, Fractional Umklapp scattering coefficient Δ=0.77, Planck constant h=6.262620×10−34 Js, and thermal linear expansion coefficient γ=1.42×10−5 K−1
  11. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2005).
  12. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 36, 6539 (1997).
    [CrossRef]
  13. Z. Salamon, H. A. Macleod, and G. Tollin, Biochim. Biophys. Acta 1331, 117 (1997).
    [PubMed]
  14. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 (1999).
    [CrossRef]
  15. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, Sens. Actuators B 54, 43 (1999).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  17. B. A. Snopok, K. V. Kostyukevich, S. I. Lysenko, P. M. Lytvyn, O. S. Lytvyn, S. V. Mamykin, S. A. Zynyo, P. E. Shepeliavyi, S. A. Kostyukevich, Yu. M. Shirshov, and E. F. Venger, Semicond. Phys., Quantum Electron. Optoelectron. 4, 56 (2001).
  18. K. A. Peterlinz and R. Georgiandis, Langmuir 12, 4731 (1996).
    [CrossRef]
  19. The optimum SPR angle is given as θspr=sin−1[1/np(epsimepsis/epsim+epsis)1/2] from the Kretschmann theory .
  20. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
    [CrossRef]
  21. S. J. Kline and F. A. McClintock, Mech. Eng. (Am. Soc. Mech. Eng.) 75, 3 (1953).
  22. Estimated elementary uncertainties: ωdm=47.5 nm×+/-1.25%(=+/-0.59375 nm), ωepsim=+/-0.002115++/-i0.081(epsim=−13.2+i1.25), ωθ=+/-1.0/60°=+/-0.0167°, ωλ=+/-1.5 nm, ωT=+/-0.1°C where dm is the thickness of the Au layer (47.5 nm), θ is the incident SPR angle optimized for water temperature of 80°C (69.47°), and λ is the incident wavelength (632.8 nm).

2007

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

2006

A. K. Sharma and B. D. Gupta, Opt. Fiber Technol. 12, 87 (2006).
[CrossRef]

2005

J. Zeng, D. Liang, and Z. Cao, Proc. SPIE 5855, 667 (2005).
[CrossRef]

2004

H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
[CrossRef]

2003

2001

B. A. Snopok, K. V. Kostyukevich, S. I. Lysenko, P. M. Lytvyn, O. S. Lytvyn, S. V. Mamykin, S. A. Zynyo, P. E. Shepeliavyi, S. A. Kostyukevich, Yu. M. Shirshov, and E. F. Venger, Semicond. Phys., Quantum Electron. Optoelectron. 4, 56 (2001).

1999

P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 (1999).
[CrossRef]

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, Sens. Actuators B 54, 43 (1999).
[CrossRef]

1998

H. P. Chaing, P. T. Leung, and W. S. Tse, J. Chem. Phys. 108, 2659 (1998).
[CrossRef]

1997

Z. Salamon, H. A. Macleod, and G. Tollin, Biochim. Biophys. Acta 1331, 117 (1997).
[PubMed]

A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, Appl. Opt. 36, 6539 (1997).
[CrossRef]

1996

K. A. Peterlinz and R. Georgiandis, Langmuir 12, 4731 (1996).
[CrossRef]

1994

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

1993

B. Chadwick and M. Gal, Jpn. J. Appl. Phys. 32, 2716 (1993).
[CrossRef]

1971

E. Z. Kretschmann, Physik 241, 313 (1971).
[CrossRef]

1953

S. J. Kline and F. A. McClintock, Mech. Eng. (Am. Soc. Mech. Eng.) 75, 3 (1953).

Anal. Chem.

P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 71, 3928 (1999).
[CrossRef]

Appl. Opt.

Biochim. Biophys. Acta

Z. Salamon, H. A. Macleod, and G. Tollin, Biochim. Biophys. Acta 1331, 117 (1997).
[PubMed]

J. Chem. Phys.

H. P. Chaing, P. T. Leung, and W. S. Tse, J. Chem. Phys. 108, 2659 (1998).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

B. Chadwick and M. Gal, Jpn. J. Appl. Phys. 32, 2716 (1993).
[CrossRef]

Langmuir

K. A. Peterlinz and R. Georgiandis, Langmuir 12, 4731 (1996).
[CrossRef]

Mech. Eng. (Am. Soc. Mech. Eng.)

S. J. Kline and F. A. McClintock, Mech. Eng. (Am. Soc. Mech. Eng.) 75, 3 (1953).

Opt. Commun.

H.-P. Chiang, H.-T. Yeh, C.-M. Chen, J.-C. Wu, S.-Y. Su, R. Chang, Y.-J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
[CrossRef]

Opt. Fiber Technol.

A. K. Sharma and B. D. Gupta, Opt. Fiber Technol. 12, 87 (2006).
[CrossRef]

Physik

E. Z. Kretschmann, Physik 241, 313 (1971).
[CrossRef]

Proc. SPIE

J. Zeng, D. Liang, and Z. Cao, Proc. SPIE 5855, 667 (2005).
[CrossRef]

Rev. Sci. Instrum.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Rev. Sci. Instrum. 65, 2829 (1994).
[CrossRef]

Semicond. Phys., Quantum Electron. Optoelectron.

B. A. Snopok, K. V. Kostyukevich, S. I. Lysenko, P. M. Lytvyn, O. S. Lytvyn, S. V. Mamykin, S. A. Zynyo, P. E. Shepeliavyi, S. A. Kostyukevich, Yu. M. Shirshov, and E. F. Venger, Semicond. Phys., Quantum Electron. Optoelectron. 4, 56 (2001).

Sens. Actuators B

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, Sens. Actuators B 54, 43 (1999).
[CrossRef]

R. Slavik and J. Homola, Sens. Actuators B 123, 10 (2007).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

The optimum SPR angle is given as θspr=sin−1[1/np(epsimepsis/epsim+epsis)1/2] from the Kretschmann theory .

Estimated elementary uncertainties: ωdm=47.5 nm×+/-1.25%(=+/-0.59375 nm), ωepsim=+/-0.002115++/-i0.081(epsim=−13.2+i1.25), ωθ=+/-1.0/60°=+/-0.0167°, ωλ=+/-1.5 nm, ωT=+/-0.1°C where dm is the thickness of the Au layer (47.5 nm), θ is the incident SPR angle optimized for water temperature of 80°C (69.47°), and λ is the incident wavelength (632.8 nm).

ωp=ωp0[1+3γ(T−T0)]−1/2, where ωp0 is the plasma frequency at reference temperature T0 and γ is the thermal linear expansion coefficient of thin metal film.

ωc=ωcp+ωce, where the photon-electron scattering frequency is defined as ωcp(T)=ω0[2/5+4(T/TD)5]∫0TD/Tz4/ez−1dz and the electron-electron scattering frequency is ωce(T)=1/6π4ΓΔ/hEF[(kBT)2+(hω/4π2)2]. Parametric values used for calculations throughout are constant coefficient ω0=1.438×10−14 rad/s, Debye temperature TD=170 K, Fermi energy EF=5.53 eV, Boltzmann constant kB=1.3807×10−23 J/K, and scattering probability Γ=0.55, Fractional Umklapp scattering coefficient Δ=0.77, Planck constant h=6.262620×10−34 Js, and thermal linear expansion coefficient γ=1.42×10−5 K−1

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SPR reflectance R as a function of water temperature for seven different prism materials using the dielectric constant of Kolomenskii et al. [12] for a thin Au film of 47.5 nm thickness.

Fig. 2
Fig. 2

SPR reflectance R as a function of water temperature for seven different refractive index values measured for thin metal films of approximately 47.5 nm thickness, coated on the top surface of a BK 7 prism ( n 2 = 1.515 ) .

Fig. 3
Fig. 3

Full-field and real-time mapping of transient temperature fields when a hot water droplet ( 80 ° C ) falls on the cold Au surface ( 20 ° C ) in (a) air environment and (b) water environment.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( T ) = R [ n 1 ( T ) , n 2 ( T ) , n 3 ( T ) , d 2 , λ I , θ ] ,
n 2 ( T ) = n r + i n i = ε 2 = 1 ω p 2 ω ( ω + i ω c ) ,

Metrics