Abstract

Metal–dielectric multilayer films show high transmission at some specific wavelengths of light due to multiple Bragg reflections. By designing the multilayer structure, the high transmission position can be tuned to be on resonance with the laser wavelength at which the light can penetrate into the highly nonlinear metallic layers, leading to an enhanced nonlinear optical response. By employing a femtosecond optical Kerr technique, we experimentally investigated AgTiO2 multilayer stacks, and an enhanced nonlinear optical response was observed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. B. Liao, W. J. Wen, G. K. L. Wong, and G. Z. Yang, Opt. Lett. 28, 1790 (2003).
    [CrossRef] [PubMed]
  2. P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, Appl. Phys. Lett. 83, 3876 (2003).
    [CrossRef]
  3. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, Appl. Phys. Lett. 78, 3953 (2001).
    [CrossRef]
  4. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, J. Appl. Phys. 95, 2755 (2004).
    [CrossRef]
  5. G. H. Ma, W. X. Sun, S.-H. Tang, H. Z. Zhang, Z. X. Shen, and S. X. Qian, Opt. Lett. 27, 1043 (2002).
    [CrossRef]
  6. Y. Yang, M. Nogami, J. L. Shi, H. G. Chen, G. H. Ma, and S. H. Tang, Appl. Phys. Lett. 88, 081110 (2006).
    [CrossRef]
  7. A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, Appl. Phys. Lett. 83, 1842 (2003).
    [CrossRef]
  8. N. I. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, Phys. Rev. Lett. 93, 123902 (2004).
    [CrossRef] [PubMed]
  9. M. Scalora, N. Mattiucci, G. D'Aguanno, M.-C. Larciprete, and M. J. Bloemer, Phys. Rev. E 73, 016603 (2006).
    [CrossRef]
  10. T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, Phys. Rev. B 73, 115103 (2006).
    [CrossRef]
  11. G. H. Ma, J. He, and S. H. Tang, Phys. Lett. A 306, 348 (2003).
    [CrossRef]
  12. G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
    [CrossRef]
  13. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
    [CrossRef]
  14. J. Dankaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
    [CrossRef]
  15. T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
    [CrossRef]
  16. C. Voisin, D. Christofilos, N. Del Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
    [CrossRef] [PubMed]
  17. C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, J. Phys. Chem. B 105, 2264 (2001).
    [CrossRef]

2006 (3)

M. Scalora, N. Mattiucci, G. D'Aguanno, M.-C. Larciprete, and M. J. Bloemer, Phys. Rev. E 73, 016603 (2006).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, Phys. Rev. B 73, 115103 (2006).
[CrossRef]

Y. Yang, M. Nogami, J. L. Shi, H. G. Chen, G. H. Ma, and S. H. Tang, Appl. Phys. Lett. 88, 081110 (2006).
[CrossRef]

2004 (2)

N. I. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, J. Appl. Phys. 95, 2755 (2004).
[CrossRef]

2003 (5)

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, Appl. Phys. Lett. 83, 3876 (2003).
[CrossRef]

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, Appl. Phys. Lett. 83, 1842 (2003).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

G. H. Ma, J. He, and S. H. Tang, Phys. Lett. A 306, 348 (2003).
[CrossRef]

H. B. Liao, W. J. Wen, G. K. L. Wong, and G. Z. Yang, Opt. Lett. 28, 1790 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, Appl. Phys. Lett. 78, 3953 (2001).
[CrossRef]

C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[CrossRef]

2000 (1)

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
[CrossRef] [PubMed]

1994 (1)

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

1991 (1)

J. Dankaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Yang, M. Nogami, J. L. Shi, H. G. Chen, G. H. Ma, and S. H. Tang, Appl. Phys. Lett. 88, 081110 (2006).
[CrossRef]

A. Suarez-Garcia, R. del Coso, R. Serna, J. Solis, and C. N. Afonso, Appl. Phys. Lett. 83, 1842 (2003).
[CrossRef]

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, Appl. Phys. Lett. 83, 3876 (2003).
[CrossRef]

G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, Appl. Phys. Lett. 78, 3953 (2001).
[CrossRef]

T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994).
[CrossRef]

J. Appl. Phys. (2)

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, J. Appl. Phys. 95, 2755 (2004).
[CrossRef]

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys. 93, 5013 (2003).
[CrossRef]

J. Phys. Chem. B (1)

C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. A (1)

G. H. Ma, J. He, and S. H. Tang, Phys. Lett. A 306, 348 (2003).
[CrossRef]

Phys. Rev. B (2)

J. Dankaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, Phys. Rev. B 44, 8214 (1991).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, Phys. Rev. B 73, 115103 (2006).
[CrossRef]

Phys. Rev. E (1)

M. Scalora, N. Mattiucci, G. D'Aguanno, M.-C. Larciprete, and M. J. Bloemer, Phys. Rev. E 73, 016603 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

N. I. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, Phys. Rev. Lett. 93, 123902 (2004).
[CrossRef] [PubMed]

C. Voisin, D. Christofilos, N. Del Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).
[CrossRef] [PubMed]

Solid State Commun. (1)

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, Solid State Commun. 118, 633 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmittance spectra of alternating five-layer Ti O 2 and four-layer Ag multilayer structure, with the layer thickness of Ti O 2 and Ag being 310 and 25 nm , respectively. The solid and dashed curves represent the pristine multilayer film and its annealing at 400 ° C under an Ar environment for 3 h . The theoretical simulation spectrum is shown as the dotted curve. Duration calculation, real, n ( λ ) , and imaginary, k ( λ ) , components of the refractive index for Ag film are from [13], and refractive indices of Ti O 2 films and substrate glass were assumed to be 2.21 and 1.52, respectively.

Fig. 2
Fig. 2

Optical Kerr responses of (a) the multilayer structure (solid curve) and 25 nm Ag film (dashed curve) and (b) 1 mm thick bulk ZnSe single crystal.

Fig. 3
Fig. 3

Calculated square of electric field amplitude ( E 2 ) distribution (a) within the multilayer film and (c) E 2 distribution within the 100 nm (solid) and 25 nm (dashed) Ag film with incidence wavelength at 800 nm ; (b) Enlargement of the circled region of (a). The incident electric field amplitude is set to unity during the calculation.

Metrics