Abstract

A vitreous material with an optimum reflective index of 1.41 for dielectric metallic hollow fiber is used for what is believed to be the first time. A smooth vitreous film is formed by the treatment of a hardener at room temperature by using the liquid-phase coating technique. Low-loss properties were obtained in both the infrared and visible wavelength regions, and the fibers are of high durability when sterilized. This hollow fiber is promising for use in medical applications or other harsh environments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. George and J. A. Harrington, Opt. Eng. 45, 055004 (2006).
    [CrossRef]
  2. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, Appl. Opt. 45, 6736 (2006).
    [CrossRef] [PubMed]
  3. J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, Lasers Surg. Med. 38, 580 (2006).
    [CrossRef] [PubMed]
  4. R. K. Nubling and J. A. Harrington, Appl. Opt. 35, 372 (1996).
    [CrossRef] [PubMed]
  5. Y. W. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, Appl. Opt. 37, 7758 (1998).
    [CrossRef]
  6. M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
    [CrossRef]
  7. R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, Opt. Eng. 46, 025001 (2007).
    [CrossRef]
  8. A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, Opt. Eng. 39, 1316 (2000).
    [CrossRef]
  9. M. Nakazawa, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, Opt. Lett. 31, 1373 (2006).
    [CrossRef] [PubMed]

2007

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, Opt. Eng. 46, 025001 (2007).
[CrossRef]

2006

2000

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, Opt. Eng. 39, 1316 (2000).
[CrossRef]

1998

1996

1984

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

Appl. Opt.

J. Lightwave Technol.

M. Miyagi and S. Kawakami, J. Lightwave Technol. 2, 116 (1984).
[CrossRef]

Lasers Surg. Med.

J. Raif, M. Vardi, O. Nahlieli, and I. Gannot, Lasers Surg. Med. 38, 580 (2006).
[CrossRef] [PubMed]

Opt. Eng.

R. George and J. A. Harrington, Opt. Eng. 45, 055004 (2006).
[CrossRef]

R. Kasahara, Y. Matsuura, T. Katagiri, and M. Miyagi, Opt. Eng. 46, 025001 (2007).
[CrossRef]

A. Inberg, M. Ben-David, M. Oksman, A. Katzir, and N. Croitoru, Opt. Eng. 39, 1316 (2000).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structures that the materials are based on: (a) main solution, (b) hardener, and (c) hardened vitreous film.

Fig. 2
Fig. 2

Loss spectra of the OC300/Ag hollow fibers in the wavelength region from the visible to the mid-infrared. The loss spectrum of the COP/Ag hollow fiber (dashed curve) is added for comparison.

Fig. 3
Fig. 3

Bending loss of the OC300/Ag hollow fiber for the Er:YAG laser light.

Fig. 4
Fig. 4

Bending loss of the OC300/Ag hollow fiber for the green pilot laser beam.

Fig. 5
Fig. 5

Transmission loss for Er:YAG laser light of Ag and OC300/Ag hollow fiber after autoclave sterilization treatment. The fibers are 10 cm long with a 0.7 mm inner diameter.

Fig. 6
Fig. 6

Loss spectrum of OC300/Ag hollow fiber in the wavelength region from the visible to the mid-infrared. The fiber is designed for low-loss delivery of C O 2 laser light.

Metrics