Abstract

Plasmon-enhanced transmission of light incident on a periodic array of nanoscale, asymmetric cruciform patterns is demonstrated. The corresponding transmission spectra are shown to be polarization dependent and possess unique properties, such as the existence of isosbestic points for which the transmission is polarization insensitive. Transmission peaks corresponding to localized surface plasmon resonances and extended surface plasmons are also identified.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  3. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  4. T. Thio, H. J. Lezec, and T. W. Ebbesen, Physica B 279, 90 (2000).
    [CrossRef]
  5. A. D. Sheehan, J. Quinn, S. Daly, P. Dillon, and R. O'Kennedy, Anal. Lett. 36, 511 (2003).
    [CrossRef]
  6. A. V. Zayats, I. I. Smolyanivov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  7. N. C. Panoiu and R. M. Osgood, Jr., Nano Lett. 4, 2427 (2004).
    [CrossRef]
  8. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, Jr., C. C. Neacsu, and M. B. Raschke, Opt. Express 14, 2921 (2006).
    [CrossRef] [PubMed]
  9. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, Opt. Lett. 29, 1414 (2004).
    [CrossRef] [PubMed]
  10. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef] [PubMed]
  11. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  12. Z. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  13. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  14. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
    [CrossRef]
  15. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  16. R. Qiang, J. Chen, T. Zhao, S. Wang, P. Ruchhoeft, and M. Morgan, Electron. Lett. 41, 914 (2005).
    [CrossRef]
  17. A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A 8, S98 (2006).
    [CrossRef]
  18. C. Imhof and R. Zengerle, Opt. Express 14, 8257 (2006).
    [CrossRef] [PubMed]
  19. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780 (1986).
    [CrossRef]
  20. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Appl. Opt. 24, 4493 (1985).
    [CrossRef] [PubMed]
  21. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]
  22. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

2006

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, Jr., C. C. Neacsu, and M. B. Raschke, Opt. Express 14, 2921 (2006).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A 8, S98 (2006).
[CrossRef]

C. Imhof and R. Zengerle, Opt. Express 14, 8257 (2006).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
[CrossRef]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

2005

R. Qiang, J. Chen, T. Zhao, S. Wang, P. Ruchhoeft, and M. Morgan, Electron. Lett. 41, 914 (2005).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyanivov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

2004

N. C. Panoiu and R. M. Osgood, Jr., Nano Lett. 4, 2427 (2004).
[CrossRef]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, Opt. Lett. 29, 1414 (2004).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

2003

A. D. Sheehan, J. Quinn, S. Daly, P. Dillon, and R. O'Kennedy, Anal. Lett. 36, 511 (2003).
[CrossRef]

2001

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

2000

T. Thio, H. J. Lezec, and T. W. Ebbesen, Physica B 279, 90 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1986

1985

1965

1944

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Anal. Lett.

A. D. Sheehan, J. Quinn, S. Daly, P. Dillon, and R. O'Kennedy, Anal. Lett. 36, 511 (2003).
[CrossRef]

Appl. Opt.

Electron. Lett.

R. Qiang, J. Chen, T. Zhao, S. Wang, P. Ruchhoeft, and M. Morgan, Electron. Lett. 41, 914 (2005).
[CrossRef]

J. Opt. A

A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, J. Opt. A 8, S98 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nano Lett.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6, 1027 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, Jr., Nano Lett. 4, 2427 (2004).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyanivov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev.

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. Lett.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Physica B

T. Thio, H. J. Lezec, and T. W. Ebbesen, Physica B 279, 90 (2000).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Transmission spectrum of a cross array. The apertures are cut into a 100 nm thick Au layer on Si O 2 . The gap sizes are g x = 40 nm and g y = 20 nm ; the periodicity is Λ = 600 nm . The crosses are L x × L y = 390 nm × 370 nm in size. The inset shows a unit cell. (b) Short-wavelength domain of the spectra. (c) Transmission spectrum of a symmetric cross array with g x = g y = 40 nm (solid curve) and g x = g y = 20 nm (dotted curve). The inset shows the short-wavelength domain of the spectra.

Fig. 2
Fig. 2

Transmission spectrum of a cross array, for two periodicities. The aperture geometry is the same to the one in Fig. 1, and the periodicities are Λ = 500 nm and Λ = 800 nm .

Fig. 3
Fig. 3

Spatial profile of the components of the electric field and the total field within the cross aperture for different ϕ. The geometry is identical to that shown in Fig. 1. (a) Field components at λ = 1.56 μ m . (b) Total field at the isosbestic point λ = 1.837 μ m .

Metrics