Abstract

A simple technique for the direct measurement of the complex temporal response of a high-speed electro-optic (EO) modulator is proposed. This technique recovers the amplitude and phase temporal profiles of an instantaneous modulation over the duration of a chirped pulse (obtained by linear dispersion) using Fourier-transform interferometry, and it exploits the time-to-frequency mapping induced by the pulse dispersion process. The method can be implemented by using either time- or frequency-domain interferometric detection, allowing the characterization of modulation bandwidths in the tens-of-gigahertz range. The concept is demonstrated by accurately measuring the complex temporal response of a 2.5Gbps intensity EO modulator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, IEEE Photon. Technol. Lett. 14, 621 (2002).
    [CrossRef]
  2. S.-C. Cao and J. C. Cartledge, IEEE Photon. Technol. Lett. 14, 1578 (2002).
    [CrossRef]
  3. C. Dorrer, IEEE Photon. Technol. Lett. 17, 2688 (2005).
    [CrossRef]
  4. C. Dorrer and I. Kang, Opt. Lett. 27, 1315 (2002).
    [CrossRef]
  5. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef] [PubMed]
  6. P. C. Chou, H. A. Haus, and J. F. Brennan III, Opt. Lett. 25, 524 (2000).
    [CrossRef]
  7. J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
    [CrossRef]
  8. J. Azaña, IEE Electron. Lett. 39, 1530 (2003).
    [CrossRef]
  9. V. Wong and I. A. Walmsley, Opt. Lett. 19, 287 (1994).
    [CrossRef] [PubMed]
  10. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, Opt. Express 15, 4597 (2007).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

C. Dorrer, IEEE Photon. Technol. Lett. 17, 2688 (2005).
[CrossRef]

2004 (1)

2003 (1)

J. Azaña, IEE Electron. Lett. 39, 1530 (2003).
[CrossRef]

2002 (3)

C. Dorrer and I. Kang, Opt. Lett. 27, 1315 (2002).
[CrossRef]

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, IEEE Photon. Technol. Lett. 14, 621 (2002).
[CrossRef]

S.-C. Cao and J. C. Cartledge, IEEE Photon. Technol. Lett. 14, 1578 (2002).
[CrossRef]

2000 (2)

P. C. Chou, H. A. Haus, and J. F. Brennan III, Opt. Lett. 25, 524 (2000).
[CrossRef]

J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
[CrossRef]

1994 (1)

IEE Electron. Lett. (1)

J. Azaña, IEE Electron. Lett. 39, 1530 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. P. Romstad, D. Birkedal, J. Mørk, and J. M. Hvam, IEEE Photon. Technol. Lett. 14, 621 (2002).
[CrossRef]

S.-C. Cao and J. C. Cartledge, IEEE Photon. Technol. Lett. 14, 1578 (2002).
[CrossRef]

C. Dorrer, IEEE Photon. Technol. Lett. 17, 2688 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Concept diagram of the time-mapping processes used for the proposed modulator direct time-response measurement. (b) Experimental setup for directly retrieving the complex temporal response of an EO modulator.

Fig. 2
Fig. 2

Typical measured interferogram between two chirped pulses. (a) Acquired by an optical sampler and a sampling oscilloscope (time domain). (b) Acquired by an OSA (spectral domain).

Fig. 3
Fig. 3

(a) Electric pulse (input excitation) applied to the intensity modulator under test. (b)–(d) Measured temporal amplitude and phase responses of the modulator to the electric pulse input at three different bias voltages: 5.12, 6.0, and 8.12 V , respectively. The solid and dashed curves represent the amplitude and the phase profiles retrieved by time-domain detection; the circles and rectangles represent the amplitude and the phase profiles retrieved by spectral-domain detection.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i ( t R ) { A ̂ 0 ( ω ) 2 s ̂ ( t R ) 2 + A ̂ 0 ( ω ) 2 + 2 A ̂ 0 ( ω ) A ̂ 0 ( ω ) s ̂ ( t R ) cos [ ω δ t + Δ ϕ + ϕ s ] } ,
I ( ω ) A ̂ 0 ( ω ) 2 { s ̂ ( t R ) 2 + 1 + 2 s ̂ ( t R ) cos [ ω δ t + ϕ s ( t R ) ] } ,

Metrics