Abstract

We obtained high-quality lowest-loss-mode lasing in quasi-stadium laser diodes having unstable resonators that consisted of two curved end mirrors and two straight sidewall mirrors. The laser diodes were fabricated by applying a reactive ion etching technique to a metal-organic chemical-vapor deposition–grown graded-index separate-confinement heterostructure single-quantum-well GaAsAlGaAs structure. The electrode contact area of the laser diodes was formed along unstable periodic orbits, along which the optical beams are localized. Highly directional fan-out beams corresponding to the numerically obtained lowest loss mode were emitted from the end mirrors under CW operation at room temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
    [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
    [CrossRef] [PubMed]
  4. A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
    [CrossRef]
  5. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, Opt. Express 2, 21 (1998).
    [CrossRef] [PubMed]
  6. T. Fukushima, J. Lightwave Technol. 18, 2208 (2000).
    [CrossRef]
  7. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, Opt. Lett. 28, 408 (2003).
    [CrossRef] [PubMed]
  8. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, J. Opt. Soc. Am. B 21, 935 (2004).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science, 1986).
  10. T. Numai, Fundamentals of Semiconductor Lasers (Springer-Verlag, 2004).
  11. D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
    [CrossRef]

2004 (1)

2003 (1)

2000 (2)

T. Fukushima, J. Lightwave Technol. 18, 2208 (2000).
[CrossRef]

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

1998 (2)

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, Opt. Express 2, 21 (1998).
[CrossRef] [PubMed]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
[CrossRef] [PubMed]

1993 (1)

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

1975 (1)

D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

Appl. Phys. Lett. (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

J. Appl. Phys. (1)

D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Science (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
[CrossRef] [PubMed]

Other (2)

A. E. Siegman, Lasers (University Science, 1986).

T. Numai, Fundamentals of Semiconductor Lasers (Springer-Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram and SEM image of the quasi-stadium laser diode with an unstable resonator: (a) device structure, (b) SEM image, (c) p-electrode contact area pattern.

Fig. 2
Fig. 2

Observed far-field emission patterns for output powers of (a) 10 mW , (b) 20 mW , (c) 30 mW , (d) 40 mW . The origin of the horizontal axes corresponds to the laser cavity axis.

Fig. 3
Fig. 3

Observed lasing spectra at output powers of (a) 10 mW , (b) 20 mW , (c) 30 mW , (d) 40 mW .

Fig. 4
Fig. 4

Calculated beam patterns for the lowest loss mode at the wavelength of the minimum diffraction loss: (a) pattern for beams propagating inside the resonator, (b) far-field emission pattern from the curved end mirror. The origin of the horizontal axes corresponds to the laser cavity axis.

Fig. 5
Fig. 5

Relationship between the wavelength shift Δ λ for the minimum diffraction loss of the lowest loss mode and the effective refractive index difference Δ n eff for the center beam and the bouncing beams.

Metrics