Abstract

We obtained high-quality lowest-loss-mode lasing in quasi-stadium laser diodes having unstable resonators that consisted of two curved end mirrors and two straight sidewall mirrors. The laser diodes were fabricated by applying a reactive ion etching technique to a metal-organic chemical-vapor deposition–grown graded-index separate-confinement heterostructure single-quantum-well GaAsAlGaAs structure. The electrode contact area of the laser diodes was formed along unstable periodic orbits, along which the optical beams are localized. Highly directional fan-out beams corresponding to the numerically obtained lowest loss mode were emitted from the end mirrors under CW operation at room temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
    [CrossRef]
  3. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
    [CrossRef] [PubMed]
  4. A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
    [CrossRef]
  5. T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, Opt. Express 2, 21 (1998).
    [CrossRef] [PubMed]
  6. T. Fukushima, J. Lightwave Technol. 18, 2208 (2000).
    [CrossRef]
  7. T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, Opt. Lett. 28, 408 (2003).
    [CrossRef] [PubMed]
  8. T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro, J. Opt. Soc. Am. B 21, 935 (2004).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science, 1986).
  10. T. Numai, Fundamentals of Semiconductor Lasers (Springer-Verlag, 2004).
  11. D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
    [CrossRef]

2004

2003

2000

T. Fukushima, J. Lightwave Technol. 18, 2208 (2000).
[CrossRef]

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

1998

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
[CrossRef] [PubMed]

T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman, Opt. Express 2, 21 (1998).
[CrossRef] [PubMed]

1993

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

1975

D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson, Appl. Phys. Lett. 62, 2021 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

J. Appl. Phys.

D. D. Cook and F. R. Nash, J. Appl. Phys. 46, 1660 (1975).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Science

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556 (1998).
[CrossRef] [PubMed]

Other

A. E. Siegman, Lasers (University Science, 1986).

T. Numai, Fundamentals of Semiconductor Lasers (Springer-Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram and SEM image of the quasi-stadium laser diode with an unstable resonator: (a) device structure, (b) SEM image, (c) p-electrode contact area pattern.

Fig. 2
Fig. 2

Observed far-field emission patterns for output powers of (a) 10 mW , (b) 20 mW , (c) 30 mW , (d) 40 mW . The origin of the horizontal axes corresponds to the laser cavity axis.

Fig. 3
Fig. 3

Observed lasing spectra at output powers of (a) 10 mW , (b) 20 mW , (c) 30 mW , (d) 40 mW .

Fig. 4
Fig. 4

Calculated beam patterns for the lowest loss mode at the wavelength of the minimum diffraction loss: (a) pattern for beams propagating inside the resonator, (b) far-field emission pattern from the curved end mirror. The origin of the horizontal axes corresponds to the laser cavity axis.

Fig. 5
Fig. 5

Relationship between the wavelength shift Δ λ for the minimum diffraction loss of the lowest loss mode and the effective refractive index difference Δ n eff for the center beam and the bouncing beams.

Metrics