Abstract

We demonstrate that a broadband coherent anti-Stokes Raman scattering (CARS) spectrum generated with a typical two-pulse scheme contains two distinct, significant signals: “2-color” CARS, where the pump and probe are provided by a narrowband pulse and the continuum pulse constitutes the Stokes light, and “3-color” CARS, where the pump and Stokes are provided by two different frequency components in the continuum pulse and the narrowband pulse serves as the probe. The CARS spectra from the two different mechanisms show distinct characteristics in Raman shift range, laser power dependence, and chirping dependence. We discuss the potential for a 3-color CARS signal to cover the fingerprint region with reduced photodamage of live cells. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

© 2007 U.S. Public Domain

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 102, 16807 (2005).
    [CrossRef] [PubMed]
  3. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 273001 (2002).
    [CrossRef]
  4. S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
    [CrossRef]
  5. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
    [CrossRef]
  6. M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  7. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  8. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. U.S.A. 104, 7776 (2007).
    [CrossRef] [PubMed]
  9. H. Kano and H. Hamaguchi, J. Raman Spectrosc. 37, 411 (2006).
    [CrossRef]
  10. K. B. Shi, P. Li, and Z. W. Liu, Appl. Phys. Lett. 90, (2007).
  11. T. W. Kee, H. X. Zhao, and M. T. Cicerone, Opt. Express 14, 3631 (2006).
    [CrossRef] [PubMed]
  12. Certain equipment is identified in this Letter to specify adequately the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology, nor does it imply that the equipment is necessarily the best available for this purpose.
  13. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 5854 (2006).
    [CrossRef] [PubMed]
  14. The multiplex CARS system consists of two synchronized femtosecond lasers. A 60 nmFWHM femtosecond pulse centered at 890 nm from one laser (Halcyon, KMLaser Inc.) was introduced to the focusing objective lens after a prism pair compressor. From the other femtosecond laser (Mira 900F, Coherent), a narrowband pulse was prepared by a dispersionless filter.
  15. K. Konig, J. Microsc. 200, 83 (2000).
    [CrossRef] [PubMed]
  16. A. Hopt and E. Neher, Biophys. J. 80, 2029 (2001).
    [CrossRef] [PubMed]
  17. V. V. Yakovlev, J. Raman Spectrosc. 34, 957 (2003).
    [CrossRef]
  18. Y. Fu, H. F. Wang, R. Y. Shi, and J. X. Cheng, Opt. Express 14, 3942 (2006).
    [CrossRef] [PubMed]

2007 (2)

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. U.S.A. 104, 7776 (2007).
[CrossRef] [PubMed]

K. B. Shi, P. Li, and Z. W. Liu, Appl. Phys. Lett. 90, (2007).

2006 (4)

T. W. Kee, H. X. Zhao, and M. T. Cicerone, Opt. Express 14, 3631 (2006).
[CrossRef] [PubMed]

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 5854 (2006).
[CrossRef] [PubMed]

Y. Fu, H. F. Wang, R. Y. Shi, and J. X. Cheng, Opt. Express 14, 3942 (2006).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, J. Raman Spectrosc. 37, 411 (2006).
[CrossRef]

2005 (2)

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 102, 16807 (2005).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
[CrossRef]

2004 (1)

2003 (1)

V. V. Yakovlev, J. Raman Spectrosc. 34, 957 (2003).
[CrossRef]

2002 (3)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 273001 (2002).
[CrossRef]

2001 (1)

A. Hopt and E. Neher, Biophys. J. 80, 2029 (2001).
[CrossRef] [PubMed]

2000 (1)

K. Konig, J. Microsc. 200, 83 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

K. B. Shi, P. Li, and Z. W. Liu, Appl. Phys. Lett. 90, (2007).

Biophys. J. (1)

A. Hopt and E. Neher, Biophys. J. 80, 2029 (2001).
[CrossRef] [PubMed]

J. Microsc. (1)

K. Konig, J. Microsc. 200, 83 (2000).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 5854 (2006).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

J. Raman Spectrosc. (2)

H. Kano and H. Hamaguchi, J. Raman Spectrosc. 37, 411 (2006).
[CrossRef]

V. V. Yakovlev, J. Raman Spectrosc. 34, 957 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, (2005).
[CrossRef]

Phys. Rev. Lett. (2)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 273001 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 102, 16807 (2005).
[CrossRef] [PubMed]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, Proc. Natl. Acad. Sci. U.S.A. 104, 7776 (2007).
[CrossRef] [PubMed]

Other (2)

Certain equipment is identified in this Letter to specify adequately the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology, nor does it imply that the equipment is necessarily the best available for this purpose.

The multiplex CARS system consists of two synchronized femtosecond lasers. A 60 nmFWHM femtosecond pulse centered at 890 nm from one laser (Halcyon, KMLaser Inc.) was introduced to the focusing objective lens after a prism pair compressor. From the other femtosecond laser (Mira 900F, Coherent), a narrowband pulse was prepared by a dispersionless filter.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Energy diagrams of the 2-color and 3-color CARS generation schemes, where the solid arrows indicate the transitions induced by the continuum pulse; the dotted arrows, those induced by the narrowband pulse. (b) Experimental scheme of the 2-pulse broadband CARS system: BPF, bandpass filter; PCF, photonic crystal fiber; LPF, long-pass filter; SPF, short-pass filter. (c) Spectra of continuum and narrowband pulses and a CARS spectrum generated from liquid benzonitrile. The vertical dotted line indicates the low-frequency edge of the 2-color CARS spectrum available with an 850 nm long-pass filter for the continuum.

Fig. 2
Fig. 2

CARS spectra of a glass coverslip as a function of time delay between the continuum and the narrowband pulses. (a) The wavelength of the continuum is longer than 850 nm , which is equivalent to > 1300 cm 1 . (b) The wavelength of the continuum is longer than 800 nm , which is equivalent to > 500 cm 1 . The intensity scales are linear and the same in range.

Fig. 3
Fig. 3

Laser power dependence of CARS spectra from a glass coverslip. The continuum light is conditioned with an 850 nm long-pass filter. (a) CARS spectra with varying narrowband pulse power and fixed continuum pulse power. (b) CARS intensities at 900 and 3000 cm 1 as a function of power, fitted to linear and quadratic curves, respectively. (c) CARS spectra with varying continuum pulse power and fixed narrowband pulse power. (d) CARS intensities at 900 and 3000 cm 1 as a function of power, fitted to quadratic and linear curves, respectively.

Fig. 4
Fig. 4

(a) Chirping effect on 2- and 3-color CARS spectra of 0.5 M benzonitrile in ethanol. The laser powers are 4 and 8 mW at the sample position for the narrowband and the femtosecond pulses, respectively. (b), (c) Pulse width effect of a transform-limited broadband pulse on 3- and 2-color CARS spectra. The time-averaged power P is adjusted to keep the same photodamage rate, which is assumed to be proportional to P 2.5 τ 1.5 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 3 - color ( 3 ) ( ω n + Ω ) A ( Ω , Ω R , Γ ) E n ( ω n ) E c * ( ω ) E c ( ω + Ω ) d ω ,
P 2 - color ( 3 ) ( ω n + Ω ) A ( Ω , Ω R , Γ ) E n ( ω n ) E n ( ω n ) * E c ( ω n + Ω ) ,

Metrics