Abstract

Using interferometric couplers and thermal tuning, we demonstrate a novel design of compact microring resonators on silicon-on-insulator platform with tunable bandwidth from 0.1to0.7nm. The structures present an extinction ratio higher than 23dB and a footprint of less than 0.001mm2, which are suitable for integrated optical signal processing such as reconfigurable filtering and routing.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  2. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamatoto, Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  3. A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, Appl. Phys. Lett. 66, 535 (1995).
    [CrossRef]
  4. B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef] [PubMed]
  6. P. Dong, S. F. Preble, and M. Lipson, Opt. Express 15, 9600 (2007).
    [CrossRef] [PubMed]
  7. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).
    [CrossRef]
  8. A. M. Armani and K. J. Vahala, Opt. Lett. 31, 1896 (2006).
    [CrossRef] [PubMed]
  9. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, Opt. Lett. 31, 2701 (2006).
    [CrossRef] [PubMed]
  10. E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, and Y. Ohmori, Electron. Lett. 32, 113 (1996).
    [CrossRef]
  11. P. Koonath, T. Indukuri, and B. Jalali, J. Lightwave Technol. 24, 1796 (2006).
    [CrossRef]
  12. J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 202 (2007).
    [CrossRef]
  13. L. Zhou and A. W. Poon, Opt. Express 15, 9194 (2007).
    [CrossRef] [PubMed]
  14. M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CPDA2.
  15. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, Opt. Express 12, 1583 (2004).
    [CrossRef] [PubMed]
  16. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, Opt. Lett. 29, 2861 (2004).
    [CrossRef]
  17. F. Xia, L. Sekaric, and Y. A. Vlasov, Opt. Express 14, 3872 (2006).
    [CrossRef] [PubMed]
  18. M. Borselli, T. J. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

2002

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamatoto, Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

1998

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

1996

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, and Y. Ohmori, Electron. Lett. 32, 113 (1996).
[CrossRef]

1995

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, Appl. Phys. Lett. 66, 535 (1995).
[CrossRef]

Appl. Phys. Lett.

A. Srinivasan, S. Murtaza, J. C. Campbell, and B. G. Streetman, Appl. Phys. Lett. 66, 535 (1995).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Münch, A. Löffler, M. Kamp, J. P. Reithmaier, V. D. Kulakovskii, and A. Forchel, Appl. Phys. Lett. 89, 051107 (2006).
[CrossRef]

Electron. Lett.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, and Y. Ohmori, Electron. Lett. 32, 113 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Yao, D. Leuenberger, M. M. Lee, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 202 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. Haus, E. Ippen, L. C. Kimberling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

J. Lightwave Technol.

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamatoto, Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

Other

M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2007), paper CPDA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of an add–drop microring resonator with (a) straight couplers and (b) interferometic couplers. (c) Tuning of the bandwidth with Δ ϕ under different coupling κ 0 .

Fig. 2
Fig. 2

(a) Optical and (b) scanning electron microscope images of the device. (c) Measured through port transmission spectrum with both heaters off (solid curve). The effective coupling κ expected from theory is shown by the dashed curve.

Fig. 3
Fig. 3

(a) Tuning of κ with heater power: the dashed line marks the critical coupling level; (I), (II), (III), and (IV) mark the states of initial, minimal, critical, and maximal coupling, respectively. (b) Corresponding throughport spectra. Scale bar: 6 dB for (III) and 3 dB for the others.

Fig. 4
Fig. 4

Tuning the bandwidth within “critical coupling” with both heaters. The dashed–dotted line marks the 3 dB level.

Metrics