Abstract

We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, Opt. Lett. 32, 241 (2007).
    [CrossRef] [PubMed]
  2. S. D. Jackson, IEEE Photon. Technol. Lett. 18, 1885 (2006).
    [CrossRef]
  3. S. D. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 2496 (2007).
    [CrossRef] [PubMed]
  4. S. D. Jackson, F. Bugge, and G. Erbert, Electron. Lett. 43, 965 (2007).
    [CrossRef]
  5. H. Hayashi, S. Ohara, N. Sugimoto, and Setsuhisa, Jpn. J. Appl. Phys., Part 1 46, 3452 (2007).
    [CrossRef]
  6. M. Nakazawa and Y. Kimura, Electron. Lett. 27, 1065 (1991).
    [CrossRef]
  7. F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
    [CrossRef]
  8. S. D. Jackson, Appl. Phys. B 76, 793 (2003).
    [CrossRef]
  9. D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
    [CrossRef]
  10. A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
    [CrossRef]
  11. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
    [CrossRef]
  12. H. Zellmer, U. Willamowski, A. Tunnermann, H. Welling, S. Unger, V. Reichel, H. R. Muller, J. Kirchhof, and P. Albers, Opt. Lett. 20, 578 (1995).
    [CrossRef] [PubMed]
  13. J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 334 (2006).
    [CrossRef]

2007

S. D. Jackson, F. Bugge, and G. Erbert, Electron. Lett. 43, 965 (2007).
[CrossRef]

H. Hayashi, S. Ohara, N. Sugimoto, and Setsuhisa, Jpn. J. Appl. Phys., Part 1 46, 3452 (2007).
[CrossRef]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, Opt. Lett. 32, 241 (2007).
[CrossRef] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 2496 (2007).
[CrossRef] [PubMed]

2006

S. D. Jackson, IEEE Photon. Technol. Lett. 18, 1885 (2006).
[CrossRef]

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 334 (2006).
[CrossRef]

2003

S. D. Jackson, Appl. Phys. B 76, 793 (2003).
[CrossRef]

2001

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

2000

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
[CrossRef]

1995

1991

M. Nakazawa and Y. Kimura, Electron. Lett. 27, 1065 (1991).
[CrossRef]

1989

D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
[CrossRef]

Appl. Phys. B

S. D. Jackson, Appl. Phys. B 76, 793 (2003).
[CrossRef]

Appl. Phys. Lett.

F. Bugge, G. Erbert, J. Fricke, S. Gramlich, R. Staske, H. Wenzel, U. Zeimer, and M. Weyers, Appl. Phys. Lett. 79, 1965 (2001).
[CrossRef]

Electron. Lett.

M. Nakazawa and Y. Kimura, Electron. Lett. 27, 1065 (1991).
[CrossRef]

S. D. Jackson, F. Bugge, and G. Erbert, Electron. Lett. 43, 965 (2007).
[CrossRef]

D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend, and A. C. Tropper, Electron. Lett. 25, 593 (1989).
[CrossRef]

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, Electron. Lett. 36, 1015 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. D. Jackson, IEEE Photon. Technol. Lett. 18, 1885 (2006).
[CrossRef]

J. F. Wu, S. B. Jiang, T. Luo, J. H. Geng, N. Peyghambarian, and N. P. Barnes, IEEE Photon. Technol. Lett. 18, 334 (2006).
[CrossRef]

J. Appl. Phys.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

H. Hayashi, S. Ohara, N. Sugimoto, and Setsuhisa, Jpn. J. Appl. Phys., Part 1 46, 3452 (2007).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. D1–D4, diode lasers; pcb, polarizing cube beam splitter. Included is a simplified energy level diagram of the Ho 3 + ion showing the pump, multiphonon decay, and laser processes.

Fig. 2
Fig. 2

Measured output power, P o u t , as a function of the launched pump power, P L , for all the cavity arrangements studied. Inset, measured spectrum of the output at maximum pump power from cavity 4 when L = 21 m .

Fig. 3
Fig. 3

External slope efficiency η S of the output (determined from P L ) as a function of the fiber length, L, for three cavity arrangements. Inset, η S as a function of the absorbed pump power calculated using both the active core absorption coefficient and the effective absorption coefficient.

Fig. 4
Fig. 4

Threshold pump power, P th , measured as a function of the fiber length, L, for the cavity 1 configuration. Two fibers were tested, one with a 100 μ m distance across the flats and the other with an 80 μ m distance.

Metrics