Abstract

We present a novel experimental method for studying photochemical reactions that involve permanent products. The accumulation of photoproducts facilitates the measurement of extremely small product yields. A calibration of the setup accounts for diffusion effects, and the experimental results can be expressed in terms of single-pulse photochemical efficiencies. A demonstration experiment on indocyanine green (ICG) is presented. The general method is suited both for femtosecond spectroscopy and quantum control experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1999).
  2. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
    [CrossRef] [PubMed]
  3. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
    [CrossRef] [PubMed]
  4. M. Shapiro, E. Frishman, and P. Brumer, Phys. Rev. Lett. 84, 1669 (2000).
    [CrossRef] [PubMed]
  5. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  6. T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (2004).
    [CrossRef]
  7. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).
    [CrossRef] [PubMed]
  8. J. Caesar, S. Sherlock, S. Shaldon, L. Chiandussi, and L. Guevara, Clin. Sci. 21, 43 (1961).
    [PubMed]
  9. W. Holzer, M. Mauerer, A. Penzkofer, R.-M. Szeimies, C. Abels, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., B 47, 155 (1998).
    [CrossRef]
  10. G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, Chem. Phys. Lett. 262, 362 (1996).
    [CrossRef]

2007 (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
[CrossRef] [PubMed]

2004 (1)

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (2004).
[CrossRef]

2000 (2)

M. Shapiro, E. Frishman, and P. Brumer, Phys. Rev. Lett. 84, 1669 (2000).
[CrossRef] [PubMed]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1998 (1)

W. Holzer, M. Mauerer, A. Penzkofer, R.-M. Szeimies, C. Abels, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., B 47, 155 (1998).
[CrossRef]

1996 (1)

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, Chem. Phys. Lett. 262, 362 (1996).
[CrossRef]

1992 (1)

R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[CrossRef] [PubMed]

1976 (1)

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).
[CrossRef] [PubMed]

1961 (1)

J. Caesar, S. Sherlock, S. Shaldon, L. Chiandussi, and L. Guevara, Clin. Sci. 21, 43 (1961).
[PubMed]

Appl. Phys. B (1)

T. Brixner, M. Strehle, and G. Gerber, Appl. Phys. B 68, 281 (2004).
[CrossRef]

Biophys. J. (1)

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, Biophys. J. 16, 1055 (1976).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, Chem. Phys. Lett. 262, 362 (1996).
[CrossRef]

Clin. Sci. (1)

J. Caesar, S. Sherlock, S. Shaldon, L. Chiandussi, and L. Guevara, Clin. Sci. 21, 43 (1961).
[PubMed]

J. Photochem. Photobiol., B (1)

W. Holzer, M. Mauerer, A. Penzkofer, R.-M. Szeimies, C. Abels, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., B 47, 155 (1998).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

M. Shapiro, E. Frishman, and P. Brumer, Phys. Rev. Lett. 84, 1669 (2000).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (1)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of accumulative measurement.

Fig. 2
Fig. 2

Implementation of the accumulative scheme.

Fig. 3
Fig. 3

Calibration, model for diffusion: (a) beam geometry; (b) calibration experiment and evaluation. Dots, data after exposure and waiting time, shaded surface, best fit to model function (6); see text.

Fig. 4
Fig. 4

Data from an experiment in which the linear chirp of the laser pulses was varied; ×, raw data; •, data corrected using the previously obtained calibration. The laser power varies by less than 4% during such a scan. Inset, power study and best fit with η I 1.94 ± 0.09 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C p u ( 0 ) = C p r ( 0 ) = C 0 .
C ̇ p u ( t ) = d p u ( C 0 C p u ( t ) ) η C p u ( t ) ,
C p r ( t ) C p u ( t ) ,
C ̇ p u ( t ) = d p u ( C 0 C p u ( t ) ) ,
C ̇ p r ( t ) = d p r ( C p u ( t ) C p r ( t ) ) .
Δ C ( τ , T ) = C 0 η ( d p r d p u ) ( d p u + η ) exp [ ( d p r + d p u ) T ( d p u + η ) τ ] { d p u exp [ d p u T ] d p r exp [ d p r T ] } { exp [ ( d p u + η ) τ ] 1 } .

Metrics