Abstract

Ultrabroadband parametric amplification of a white-light continuum in the near IR (100THz, 1.22.4μm) is demonstrated in BiB3O6 pumped by 45fs long pulses at 800nm at a repetition rate of 1kHz. The energy obtained with a 5mm thick crystal reached 50μJ, corresponding to external conversion efficiency of 20%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, J. Phys. Chem. A 107, 4592 (2003).
    [CrossRef]
  2. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, Opt. Lett. 28, 182 (2003).
    [CrossRef] [PubMed]
  3. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
    [CrossRef] [PubMed]
  4. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
    [CrossRef]
  5. A. Brodeur and S. L. Chin, J. Opt. Soc. Am. B 16, 637 (1999).
    [CrossRef]
  6. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  7. B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, Sov. J. Quantum Electron. 12, 1654 (1982) B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis,[Kvantovaya Elektron. (Moscow) 9, 2534 (1982)].
    [CrossRef]
  8. S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov, Quantum Electron. 34, 477 (2004) S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov,[Kvantovaya Elektron. (Moscow) 34, 477 (2004)].
    [CrossRef]
  9. M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, Appl. Phys. B 85, 73 (2006).
    [CrossRef]
  10. N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007).
    [CrossRef]
  11. V. Petrov, M. Ghotbi, P. Tzankov, F. NoackI. Nikolov, I. Buchvarov, and M. Ebrahim-Zadeh, Proc. SPIE 6455, 64550C (2007).
    [CrossRef]

2007 (2)

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007).
[CrossRef]

V. Petrov, M. Ghotbi, P. Tzankov, F. NoackI. Nikolov, I. Buchvarov, and M. Ebrahim-Zadeh, Proc. SPIE 6455, 64550C (2007).
[CrossRef]

2006 (1)

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, Appl. Phys. B 85, 73 (2006).
[CrossRef]

2004 (1)

S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov, Quantum Electron. 34, 477 (2004) S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov,[Kvantovaya Elektron. (Moscow) 34, 477 (2004)].
[CrossRef]

2003 (4)

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, J. Phys. Chem. A 107, 4592 (2003).
[CrossRef]

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, Opt. Lett. 28, 182 (2003).
[CrossRef] [PubMed]

A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

1982 (1)

B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, Sov. J. Quantum Electron. 12, 1654 (1982) B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis,[Kvantovaya Elektron. (Moscow) 9, 2534 (1982)].
[CrossRef]

Appl. Phys. B (1)

M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, Appl. Phys. B 85, 73 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, J. Phys. Chem. A 107, 4592 (2003).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

N. Umemura, K. Miyata, and K. Kato, Opt. Mater. 30, 532 (2007).
[CrossRef]

Proc. SPIE (1)

V. Petrov, M. Ghotbi, P. Tzankov, F. NoackI. Nikolov, I. Buchvarov, and M. Ebrahim-Zadeh, Proc. SPIE 6455, 64550C (2007).
[CrossRef]

Quantum Electron. (1)

S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov, Quantum Electron. 34, 477 (2004) S. N. Orlov, E. V. Pestryakov, and Yu. N. Polivanov,[Kvantovaya Elektron. (Moscow) 34, 477 (2004)].
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Sov. J. Quantum Electron. (1)

B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, Sov. J. Quantum Electron. 12, 1654 (1982) B. Bareika, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis,[Kvantovaya Elektron. (Moscow) 9, 2534 (1982)].
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Parametric gain of BIBO for collinear type e o o interaction at λ P = 800 nm calculated for several fixed phase-matching angles close to degeneracy ( θ = 11.05 ° ) . The crystal length ( 3 mm ) and the pump intensity ( 60 GW cm 2 ) correspond to the experimental conditions. (b) Gain bandwidth (FWHM) of BIBO, analytically calculated for the same parameters as in (a) using only the first-, second-, third-, and fourth-order Taylor series expansion terms of the wave vector mismatch Δ k , respectively.

Fig. 2
Fig. 2

Experimental setup: VNDF, variable neutral density filter; filters, Ho:YAG mirrors reflecting the 2.1 μ m pump; XFROG, cross-correlation frequency-resolved optical gating based on sum-frequency generation in a 10 μ m thick, type I ( o o e ) BBO crystal.

Fig. 3
Fig. 3

Spectra of the WLC amplified in (a) 3 mm and (b) 5 mm thick BIBO, measured by the InGaAs spectrometer (thick solid curve), reconstructed from the time-integrated XFROG trace (dashed curve), and computed from the Manley–Rowe relation (gray curve). The inset in (a) shows a cross-correlation function with a Gaussian fit of the amplified WLC in the 3 mm BIBO; the inset in (b) is a comparison of the spectra of the WLC seed generated in YAG (gray curve) and the amplified WLC in the 3 mm (solid curve) and 5 mm (dashed curve) thick BIBO crystals.

Fig. 4
Fig. 4

XFROG trace of the WLC amplified in the 5 mm thick BIBO using probe pulses at 800 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν FWHM = Δ ω FWHM 2 π = 2 ( 9 ln 2 ) 1 8 π ( Γ L ) 1 8 4 k S ω S 4 + 4 k I ω I 4 1 4 ,

Metrics