Abstract

The widely used setup for the generation of femtosecond infrared (IR) pulses based on parametric amplifiers (OPAs) and difference frequency mixing (DFM) is extended to produce tunable narrowband mid-IR pulses. The insertion of pairs of silicon prisms after the OPA induces adjustable chirp, which leads to the generation of narrowband pulses in the DFM stage. Rapid tunability of the mid-IR wavelength via a computer-controllable actuator can be achieved in a range of 200cm1 at a bandwidth of the IR-pulses between 15 and 50cm1 and pulse energies up to 0.4μJ. The narrowband mid-IR pulses are well suited for 2D IR spectroscopy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 104, 14190 (2007), and references therein.
    [CrossRef] [PubMed]
  2. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
    [CrossRef] [PubMed]
  3. S. Woutersen and P. Hamm, J. Phys. Condens. Matter 14, R1035 (2002).
    [CrossRef]
  4. T. Elsaesser and M. C. Nuss, Opt. Lett. 16, 411 (1991).
    [CrossRef] [PubMed]
  5. P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998).
    [CrossRef]
  6. T. Witte, K. L. Kompa, and M. Motzkus, Appl. Phys. B 76, 467 (2003).
    [CrossRef]
  7. H. S. Tan and W. S. Warren, Opt. Express 11, 1021 (2003).
    [CrossRef] [PubMed]
  8. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
    [CrossRef] [PubMed]
  9. P. Hamm, R. A. Kaindl, and J. Stenger, Opt. Lett. 25, 1798 (2000).
    [CrossRef]
  10. T. Schrader, A. Sieg, F. Koller, W. Schreier, Q. An, W. Zinth, and P. Gilch, Chem. Phys. Lett. 392, 358 (2004).
    [CrossRef]
  11. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  12. J.-C. Diels and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic, 1995).
  13. W. Tropf, M. Thomas, and T. Harris, Handbook of Optics (McGraw-Hill, 1995).

2007 (1)

R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 104, 14190 (2007), and references therein.
[CrossRef] [PubMed]

2006 (1)

2004 (1)

T. Schrader, A. Sieg, F. Koller, W. Schreier, Q. An, W. Zinth, and P. Gilch, Chem. Phys. Lett. 392, 358 (2004).
[CrossRef]

2003 (4)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

T. Witte, K. L. Kompa, and M. Motzkus, Appl. Phys. B 76, 467 (2003).
[CrossRef]

H. S. Tan and W. S. Warren, Opt. Express 11, 1021 (2003).
[CrossRef] [PubMed]

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Woutersen and P. Hamm, J. Phys. Condens. Matter 14, R1035 (2002).
[CrossRef]

2000 (1)

1998 (1)

P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998).
[CrossRef]

1991 (1)

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (1)

T. Witte, K. L. Kompa, and M. Motzkus, Appl. Phys. B 76, 467 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

T. Schrader, A. Sieg, F. Koller, W. Schreier, Q. An, W. Zinth, and P. Gilch, Chem. Phys. Lett. 392, 358 (2004).
[CrossRef]

J. Phys. Chem. B (1)

P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123 (1998).
[CrossRef]

J. Phys. Condens. Matter (1)

S. Woutersen and P. Hamm, J. Phys. Condens. Matter 14, R1035 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 104, 14190 (2007), and references therein.
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Other (2)

J.-C. Diels and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic, 1995).

W. Tropf, M. Thomas, and T. Harris, Handbook of Optics (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for mid-IR pulse generation. (a) Basic scheme. Detailed view of the stretcher (b) and of one prism pair (c). For more information see text.

Fig. 2
Fig. 2

(a) Spectra of the mid-IR-pulses before (gray points) and after (black points) introducing the prism pairs (total Si length L S = L I = 44 mm ). Both spectra are nearly Gaussian shaped (solid curve). (b) Bandwidth as a function of Si length. The data point at 50 mm was measured under different conditions, using Si cubes instead of prisms.

Fig. 3
Fig. 3

Mid-IR spectra generated with chirped near-IR pulses, performed with a Si path length of L S = L I = 27 mm . (a) The prism pairs work well in the spectral range from 3.5 to 10.5 μ m . (b) By variation of the piezo actuator the wavelength of the narrowband pulses can be tuned in a range of 200 cm 1 (black curves). The peak amplitudes for the different settings qualitatively follow the spectrum of the mid-IR pulse obtained without prism pairs (gray curve). The weak asymmetry of the spectra is attributed to imperfect chirp adjustment for L S = L I .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E S ( t , L S ) = E ̃ S ( t , L S ) exp [ i ω S t + i γ S ( L S ) t 2 ] ,
E I ( t , L I ) = E ̃ I ( t , L I ) exp [ i ω I t + i γ I ( L I ) t 2 ] .
E D ( t , L S , L I ) = E ̃ S ( t , L S ) E ̃ I * ( t , L I ) exp [ i ( ω S ω I ) t + i ( γ S ( L S ) γ I ( L I ) ) t 2 ] .
E D , τ ( t ) E ̃ S ( t ) E ̃ I * ( t + τ ) exp [ i ( ω S ω I ) t 2 i γ τ t ] .

Metrics