Abstract

We introduce a light-stopping process that uses dynamic loss tuning in coupled-resonator delay lines. We demonstrate via numerical simulations that increasing the loss of selected resonators traps light in a zero group velocity mode concentrated in the low-loss portions of the delay line. The large dynamic range achievable for loss modulation should increase the light-stopping bandwidth relative to previous approaches based on refractive index tuning.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
    [CrossRef] [PubMed]
  2. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
    [CrossRef] [PubMed]
  3. M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  4. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, Opt. Lett. 30, 2790 (2005).
    [CrossRef] [PubMed]
  5. J. B. Khurgin, Phys. Rev. A 72, 023810 (2005).
    [CrossRef]
  6. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, Opt. Lett. 31, 1985 (2006).
    [CrossRef] [PubMed]
  7. S. Longhi, Phys. Rev. E 75, 026606 (2007).
    [CrossRef]
  8. Q. Xu, P. Dong, and M. Lipson, Nat. Phys. 3, 406 (2007).
    [CrossRef]
  9. M. F. Yanik and S. Fan, Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  10. M. Lipson, J. Lightwave Technol. 23, 4222 (2005).
    [CrossRef]
  11. M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004).
    [CrossRef] [PubMed]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  13. I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, Appl. Phys. Lett. 50, 1010 (1987).
    [CrossRef]
  14. W. H. Knox, D. S. Chemela, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Phys. Rev. Lett. 62, 1190 (1989).
    [CrossRef]
  15. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]
  16. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
    [CrossRef] [PubMed]
  17. A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, Appl. Phys. Lett. 69, 653 (1996).
    [CrossRef]

2007 (2)

S. Longhi, Phys. Rev. E 75, 026606 (2007).
[CrossRef]

Q. Xu, P. Dong, and M. Lipson, Nat. Phys. 3, 406 (2007).
[CrossRef]

2006 (1)

2005 (5)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, Phys. Rev. A 72, 023810 (2005).
[CrossRef]

Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, Opt. Lett. 30, 2790 (2005).
[CrossRef] [PubMed]

M. Lipson, J. Lightwave Technol. 23, 4222 (2005).
[CrossRef]

M. F. Yanik and S. Fan, Phys. Rev. A 71, 013803 (2005).
[CrossRef]

2004 (2)

M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

1996 (1)

A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, Appl. Phys. Lett. 69, 653 (1996).
[CrossRef]

1989 (1)

W. H. Knox, D. S. Chemela, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Phys. Rev. Lett. 62, 1190 (1989).
[CrossRef]

1987 (2)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, Appl. Phys. Lett. 50, 1010 (1987).
[CrossRef]

Appl. Phys. Lett. (2)

I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, Appl. Phys. Lett. 50, 1010 (1987).
[CrossRef]

A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, Appl. Phys. Lett. 69, 653 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, Nat. Phys. 3, 406 (2007).
[CrossRef]

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (2)

J. B. Khurgin, Phys. Rev. A 72, 023810 (2005).
[CrossRef]

M. F. Yanik and S. Fan, Phys. Rev. A 71, 013803 (2005).
[CrossRef]

Phys. Rev. E (1)

S. Longhi, Phys. Rev. E 75, 026606 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

W. H. Knox, D. S. Chemela, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Phys. Rev. Lett. 62, 1190 (1989).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top diagram shows a section of the coupled-resonator light-stopping system. The unit cell has length L and consists of a lossy resonator with dynamic loss γ ( t ) and a low-loss resonator with static loss γ 0 . The bottom plot shows the modulation performed on γ ( t ) , with the dotted line indicating the critical-damping point.

Fig. 2
Fig. 2

Band structure for the system shown in Fig. 1. The left column shows ( Re [ f ] f 0 ) , while the right column shows Q = f 0 2 Im [ f ] . Δ f and Δ k denote, respectively, the width in frequency and in wave vector space occupied by a Gaussian pulse with a bandwidth of 0.4 THz . (a) Initial state γ ( t ) κ , where Q of both lower and upper bands are equal and constant for all k vectors. (b) Critical-damping point γ ( t ) = κ . (c) Narrow-bandwidth state γ ( t ) κ , where Re [ f ] of both lower and upper bands are equal and constant for all k vectors.

Fig. 3
Fig. 3

Spatial signal profile from coupled-mode analysis: (a) input pulse, (b) pulse in narrow-bandwidth stop state, (c) output pulses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 2 π d a i ( t ) d t = ( j f 0 γ ( t ) ) a i ( t ) + j κ b i ( t ) + j κ b i 1 ( t ) ,
1 2 π d b i ( t ) d t = ( j f 0 γ 0 ) b i ( t ) + j κ a i + 1 ( t ) + j κ a i ( t ) .
f = f 0 + j γ ( t ) + γ 0 2 ± 2 κ 2 cos 2 [ k L 2 ] ( γ ( t ) γ 0 2 ) 2 ,

Metrics