Abstract

We developed a 1- pixel ultraviolet-to-near-infrared (UV-to-NIR) liquid-crystal spatial light modulator (LC-SLM) and clarified its phase modulation properties in detail, for the first time to our knowledge. The employed liquid crystal is transparent over 2601100nm. A phase modulation capability of 55.8rad at 305nm and 14.0rad at 1000nm is enough to compensate for UV-to-NIR nonlinear chirped pulses. The LC-SLM driving parameters of a period T=13ms and an applied voltage VDD=7.0V were determined. The 648- pixel extension of this new device will permit us to realize the high-power generation of single subcycle optical pulses and the direct UV-to-NIR pulse shaping.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. M. Yamashita, K. Yamane, and R. Morita, IEEE J. Sel. Top. Quantum Electron. 12, 213 (2006).
    [CrossRef]
  3. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, J. Opt. Soc. Am. B 24, 985 (2007).
    [CrossRef]
  4. N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, Opt. Lett. 25, 183 (2000).
    [CrossRef]
  5. H. Rabitz, R. de Vivie-Eiedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
    [CrossRef] [PubMed]
  6. V. Pervak, F. Krausz, and A. Apolonski, Opt. Lett. 32, 1183 (2007) and references therein.
    [CrossRef] [PubMed]
  7. F. Verluise, V. Loude, Z. Cheng, Ch. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  8. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
    [CrossRef]
  9. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
  10. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]

2007 (2)

2006 (1)

M. Yamashita, K. Yamane, and R. Morita, IEEE J. Sel. Top. Quantum Electron. 12, 213 (2006).
[CrossRef]

2003 (1)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

2002 (1)

2000 (4)

1999 (1)

Appl. Phys. B (1)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

M. Yamashita, K. Yamane, and R. Morita, IEEE J. Sel. Top. Quantum Electron. 12, 213 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science (1)

H. Rabitz, R. de Vivie-Eiedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transmittance curves of UV-LC-SLM (solid curve) and visible LC-SLM (dotted curve). (b) Structure of UV-LC-SLM and applied voltage waveform. LC, liquid crystal; FS, fused silica substrate; ITO, indium tin oxide film; OF, oriented organic film; DC, DC power source; FG, function generator; T, period; τ, pulse width.

Fig. 2
Fig. 2

(a) Period dependence of phase modulation Δ ϕ at 1000 nm , V DD = 6 V and τ T = 0.5 . (b) Enlarged y axis.

Fig. 3
Fig. 3

(a) Applied voltage dependence of phase modulation Δ ϕ at 305 (solid curve), 600 (dotted curve), and 1000 nm (dashed curve) under τ = 6.5 ms and T = 13 ms . (b) Wavelength dependence of phase modulation for different widths ( τ ) of applied voltage pulses at T = 13 ms and V DD = 7.0 V .

Fig. 4
Fig. 4

Transient response of UV-LC-SLM at 633 nm . (a) Transmitted light intensity I ( t ) at V appl = 7.0 V . (b) Transient phase modulation calculated from I ( t ) at V appl = 7.0 V . (c) Applied voltage V appl dependence of response time τ r for UV-LC-SLM (open circles, τ r at 7.0 V ) and visible LC-SLM (open triangles, τ r at 5.0 V ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = [ A 2 ] { 1 cos [ φ ( t ) + φ 0 ] } .

Metrics