Abstract

We investigate an efficient scheme to generate and outcouple extreme ultraviolet frequency combs based on cavity-enhanced noncollinear high-harmonic generation. Our numerical results show that phase matching plays a crucial role for high energy conversion and output-coupling efficiencies, which strongly depend on the crossing angle, ionization probability, and initial atomic density.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  2. S. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
    [CrossRef]
  3. S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, Appl. Phys. B 78, 5 (2004).
    [CrossRef]
  4. A. Rundquist, C. Durfee III, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, Nature 280, 1412 (1998).
  5. R. Jones and J. Ye, Opt. Lett. 29, 2812 (2004).
    [CrossRef] [PubMed]
  6. C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. Schuessler, F. Krausz, and T. Hänsch, Nature 436, 234 (2005).
    [CrossRef] [PubMed]
  7. R. Jones, K. Moll, M. Thorpe, and J. Ye, Rev. Mod. Phys. 94, 193201 (2005).
  8. K. Moll, R. Jones, and J. Ye, Opt. Express 13, 1672 (2005).
    [CrossRef] [PubMed]
  9. K. Moll, R. Jones, and J. Ye, Opt. Express 14, 8189 (2006).
    [CrossRef] [PubMed]
  10. M. Lewenstein, P. Salières, and A. L'Huillier, Phys. Rev. A 52, 4747 (1995).
    [CrossRef] [PubMed]
  11. I. Christov, M. Murnane, and H. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997).
    [CrossRef]
  12. S. Fomichev, P. Breger, B. Carre, P. Agostini, and D. Zaretsky, Laser Phys. 12, 383 (2002).
  13. A. L'Huillier, X. Li, and L. Lompré, J. Opt. Soc. Am. B 7, 527 (1990).
    [CrossRef]

2006 (1)

2005 (3)

K. Moll, R. Jones, and J. Ye, Opt. Express 13, 1672 (2005).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. Schuessler, F. Krausz, and T. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

R. Jones, K. Moll, M. Thorpe, and J. Ye, Rev. Mod. Phys. 94, 193201 (2005).

2004 (2)

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, Appl. Phys. B 78, 5 (2004).
[CrossRef]

R. Jones and J. Ye, Opt. Lett. 29, 2812 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
[CrossRef]

2002 (2)

Th. Udem, R. Holzwarth, and T. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

S. Fomichev, P. Breger, B. Carre, P. Agostini, and D. Zaretsky, Laser Phys. 12, 383 (2002).

1998 (1)

A. Rundquist, C. Durfee III, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, Nature 280, 1412 (1998).

1997 (1)

I. Christov, M. Murnane, and H. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997).
[CrossRef]

1995 (1)

M. Lewenstein, P. Salières, and A. L'Huillier, Phys. Rev. A 52, 4747 (1995).
[CrossRef] [PubMed]

1990 (1)

Appl. Phys. B (1)

S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, Appl. Phys. B 78, 5 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

S. Fomichev, P. Breger, B. Carre, P. Agostini, and D. Zaretsky, Laser Phys. 12, 383 (2002).

Nature (3)

A. Rundquist, C. Durfee III, Z. Chang, C. Herne, S. Backus, M. Murnane, and H. Kapteyn, Nature 280, 1412 (1998).

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. Schuessler, F. Krausz, and T. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Lewenstein, P. Salières, and A. L'Huillier, Phys. Rev. A 52, 4747 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

I. Christov, M. Murnane, and H. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997).
[CrossRef]

Rev. Mod. Phys. (2)

S. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
[CrossRef]

R. Jones, K. Moll, M. Thorpe, and J. Ye, Rev. Mod. Phys. 94, 193201 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic for cavity-enhanced noncollinear HHG-assisted XUV frequency combs generation. (b) Dependence of the optimal gas pressure on the ionization probability.

Fig. 2
Fig. 2

(a) Far-field distribution of the input FW beams and (b) corresponding profile in the time–space domain as 2 θ = 2 ° and peak intensities I 10 = I 20 = 1.4 × 10 13 W cm 2 . The far-field distributions of the generated harmonics from the 3rd to 13th are presented in (c)–(h). The initial atomic density N 0 = 1.5 × 10 19 cm 3 .

Fig. 3
Fig. 3

(a) Far-field distribution of the input FW beams and (b) corresponding profile in the time–space domain as 2 θ = 4 ° and peak intensities I 10 = I 20 = 1.1 × 10 13 W cm 2 . The far-field distributions of the generated (c) 3rd and (d), (e) 11th harmonics under different conditions are shown at the bottom panels. The simulation parameters are I 10 = I 20 = 1.1 × 10 13 W cm 2 for (c) and (d) and 2.0 × 10 13 W cm 2 for (e), and N 0 = 3.0 × 10 19 cm 3 for (c) and (d) and 1.0 × 10 18 cm 3 for (e).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ E f ( τ ) 2 c 2 ξ τ E f ( τ ) = N e ε 0 c 2 E f ( τ ) + 2 π c 2 2 τ 2 [ N a ( τ ) α f E f ( τ ) ] ,
Δ E h ( τ ) 2 c 2 ξ τ E h ( τ ) = N e ε 0 c 2 E h ( τ ) + 2 π c 2 2 τ 2 [ N a ( τ ) α h E h ( τ ) ] + 1 ε 0 c 2 2 τ 2 [ N a ( τ ) d ( τ ) ] .

Metrics