Abstract

We measured linear and quadratic dispersion on millimeter-length fibers, waveguides, and nanowires based on common-path spectral interferometry. We obtained the linear dispersion parameter, β, with a relative precision of 1.45×104, and extracted the quadratic dispersion parameter, β, from the Taylor expansion of β. β values show a discrepancy of <1% when compared with simulation as well as with measurement results obtained by a conventional Michelson interferometer. Using this method, we experimentally confirmed the sign inversion of the group velocity dispersion of AlGaAs nanowires for what is believed to be the first time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. A. El-Ganainy, S. Mokhov, K. G. Markis, and D. N. Christodoulides, Opt. Express 14, 2277 (2006).
    [CrossRef] [PubMed]
  2. J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, IEEE J. Quantum Electron. 35, 510 (1999).
    [CrossRef]
  3. C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. G. Kazansky, in Optical Fiber Communication Conference (Optical Society of America, 2005), paper OFB3.
  4. R. Cella and W. Wood, in Proceedings of the Sixth Optical Fiber Measurement Conference (OFMC, 2001), pp. 207-210.
  5. P. Merrit, R. P. Tatum, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]
  6. C. Dorrer, J. Opt. Soc. Am. B 16, 1160 (1999).
    [CrossRef]
  7. A. Vakhtin, D. Kane, W. Wood, and K. Peterson, Appl. Opt. 42, 6953 (2003).
    [CrossRef] [PubMed]
  8. M. Asobe, K. Naganuma, and T. Kaino, Appl. Phys. Lett. 64, 2922 (1994).
    [CrossRef]
  9. K. Naganuma, Appl. Phys. Lett. 64, 261 (1994).
    [CrossRef]

2006

2003

1999

C. Dorrer, J. Opt. Soc. Am. B 16, 1160 (1999).
[CrossRef]

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, IEEE J. Quantum Electron. 35, 510 (1999).
[CrossRef]

1994

M. Asobe, K. Naganuma, and T. Kaino, Appl. Phys. Lett. 64, 2922 (1994).
[CrossRef]

K. Naganuma, Appl. Phys. Lett. 64, 261 (1994).
[CrossRef]

1989

P. Merrit, R. P. Tatum, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Asobe, K. Naganuma, and T. Kaino, Appl. Phys. Lett. 64, 2922 (1994).
[CrossRef]

K. Naganuma, Appl. Phys. Lett. 64, 261 (1994).
[CrossRef]

IEEE J. Quantum Electron.

J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, IEEE J. Quantum Electron. 35, 510 (1999).
[CrossRef]

J. Lightwave Technol.

P. Merrit, R. P. Tatum, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Other

C. Corbari, A. Canagasabey, M. Ibsen, F. Mezzapesa, C. Codemard, J. Nilsson, and P. G. Kazansky, in Optical Fiber Communication Conference (Optical Society of America, 2005), paper OFB3.

R. Cella and W. Wood, in Proceedings of the Sixth Optical Fiber Measurement Conference (OFMC, 2001), pp. 207-210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the single-arm interferometer for measuring the dispersion of fiber waveguide samples.

Fig. 2
Fig. 2

Measured β (a) and β (b) for a 6 mm piece of twin-hole fiber compared with Michelson interferometer measurements of a 10 cm piece of the same fiber.

Fig. 3
Fig. 3

(a) Measured β and N g (inset) and (b) β compared with the simulated dispersion for a 2.88 mm AlGaAs ridge waveguide sample obtained using the effective index method.

Fig. 4
Fig. 4

Measured (dots with error bars) and calculated GVD versus waveguide width at the wavelength of 1.55 μ m .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β ( λ j ) = β j = π L j d ,
I j ( λ ) I j , max = 1 [ a 0 + a 1 cos ( 2 ( λ λ j ) β j d ) + a 2 cos ( 4 ( λ λ j ) β j d ) + ] ,
β j = π m p , j δ λ M d ,
N g = λ 2 2 π β , GVD = λ 3 ( 2 π c ) 2 ( 2 β + λ β ) ,

Metrics