Abstract

We demonstrate a high-average-power continuous wave (cw) and cw mode-locked Cr3+:LiCAF laser pumped by broad-area laser diodes. In cw lasing experiments, up to 580mW of output was obtained with 4.35W of incident pump. A semiconductor saturable absorber mirror was used to initiate stable, self-starting, mode locking. In the cw mode-locked regime, the Cr3+:LiCAF laser produced nearly transform-limited, 67fs long pulses near 800nm with an average output power of 300mW. The pulse repetition rate was 120MHz, with a pulse energy of 2.5nJ.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
    [CrossRef]
  2. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
    [CrossRef]
  3. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
    [CrossRef]
  4. K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
    [CrossRef]
  5. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
    [CrossRef]
  6. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, Opt. Lett. 28, 1713 (2003).
    [CrossRef] [PubMed]
  7. A. Isemann and C. Fallnich, Opt. Express 11, 259 (2003).
    [CrossRef] [PubMed]
  8. P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, Opt. Lett. 27, 1726 (2002).
    [CrossRef]
  9. P. LiKamWa, B. H. T. Chai, and A. Miller, Opt. Lett. 17, 1438 (1992).
    [CrossRef] [PubMed]
  10. D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
    [CrossRef]
  11. J. M. Eichenholz and M. Richardson, IEEE J. Quantum Electron. 34, 910 (1998).
    [CrossRef]
  12. M. Stalder, M. Bass, and B. H. T. Chai, J. Opt. Soc. Am. B 9, 2271 (1992).
    [CrossRef]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
    [CrossRef]
  14. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
    [CrossRef]

2003 (2)

2002 (2)

P. Wagenblast, U. Morgner, F. Grawert, V. Scheuer, G. Angelow, M. J. Lederer, and F. X. Kärtner, Opt. Lett. 27, 1726 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
[CrossRef]

2000 (1)

D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
[CrossRef]

1998 (2)

J. M. Eichenholz and M. Richardson, IEEE J. Quantum Electron. 34, 910 (1998).
[CrossRef]

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[CrossRef]

1997 (1)

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
[CrossRef]

1996 (2)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
[CrossRef]

1992 (2)

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
[CrossRef]

Appl. Phys. B (1)

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
[CrossRef]

J. M. Eichenholz and M. Richardson, IEEE J. Quantum Electron. 34, 910 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
[CrossRef]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

J. Cryst. Growth (1)

D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

K. M. Gabel, P. Russbuldt, R. Lebert, and A. Valster, Opt. Commun. 157, 327 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the diode-pumped Cr 3 + : LiCAF laser system. Dashed lines indicate the cw cavity.

Fig. 2
Fig. 2

Continuous-wave efficiency curves for the diode pumped Cr 3 + : LiCAF laser, taken with the 1.4%, 3.4%, and 4.3% output couplers.

Fig. 3
Fig. 3

Spectra and background-free intensity autocorrelation taken using a (a) 75 mm radius M4 [see Fig. 1] and a 2.4% output coupler and (b) 100 mm radius M4 and a 1% output coupler. Output powers were (a) 300 mW and (b) 150 mW , corresponding to (a) 2.5 nJ and (b) 1.25 nJ pulse energies for the 120 MHz repetition rate cavity.

Metrics