Abstract

Spontaneous parametric downconversion (SPDC) can be enhanced in double-channel side-coupled microring resonator structures, generating entangled photons spatially separated in different channels. The enhancement is even more drastic in single-channel side-coupled microring resonator structures, although the generated entangled photons are not spatially separated, and it might be most interesting to use a ring tuned for nondegenerate SPDC.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
    [CrossRef] [PubMed]
  2. S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
    [CrossRef]
  3. Z. S. Yang, P. Chak, R. Iyer, A. D. Bristow, J. S. Aitchison, H. M. van Driel, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826 (2007).
    [CrossRef] [PubMed]
  4. Y. Dumeige and P. Feron, Phys. Rev. A 74, 063804 (2006).
    [CrossRef]
  5. P. Chak and J. E. Sipe, 'Dressed-mode Hamiltonian for discrete-continuum coupling in side-coupled microcavity structures,' submitted to Phys. Rev. E.
  6. J. E. Sipe, N. A. R. Navin, P. Chak, and S. Pereira, Phys. Rev. E 69, 016604 (2004).
    [CrossRef]
  7. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
    [CrossRef]
  8. A. Yariv, Quantum Electronics (Wiley, 1975).
  9. C. H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
    [CrossRef] [PubMed]
  10. C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

Y. Dumeige and P. Feron, Phys. Rev. A 74, 063804 (2006).
[CrossRef]

2004 (3)

J. E. Sipe, N. A. R. Navin, P. Chak, and S. Pereira, Phys. Rev. E 69, 016604 (2004).
[CrossRef]

C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef] [PubMed]

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
[CrossRef]

1996 (2)

C. H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
[CrossRef] [PubMed]

A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[CrossRef] [PubMed]

1967 (1)

S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (2)

Y. Dumeige and P. Feron, Phys. Rev. A 74, 063804 (2006).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (1)

J. E. Sipe, N. A. R. Navin, P. Chak, and S. Pereira, Phys. Rev. E 69, 016604 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[CrossRef] [PubMed]

S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev. Lett. 18, 732 (1967).
[CrossRef]

C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004).
[CrossRef] [PubMed]

Other (2)

P. Chak and J. E. Sipe, 'Dressed-mode Hamiltonian for discrete-continuum coupling in side-coupled microcavity structures,' submitted to Phys. Rev. E.

A. Yariv, Quantum Electronics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the (a) double-channel and (b) single-channel side-coupled resonator structure.

Fig. 2
Fig. 2

Dependence of (a) conversion efficiency ( C C ) , (b) entanglement, on T i n T o . SC (DC) stands for single (double) channel.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H = H c h + H c p + H r ,
H c h = J , μ d z [ ω J , μ ψ J , μ ( z ) ψ J , μ ( z ) + ( i v J , μ 2 ψ J , μ ( z ) z ψ J , μ ( z ) + h.c ) ] ,
H c p = 2 π J , μ [ γ J , μ b J ψ J , μ ( 0 ) + γ J , μ * ψ J , μ ( 0 ) b J ] ,
H r = J ω J b J b J + Ω n l * b F 2 b S + Ω n l b S b F 2 .
Ω n l = i e i ϕ v F , R ω F v S , R ( 8 P A π R ) .
i d O B ( t ) d t = [ O B ( t ) , V B ( t ) ] ,
ψ J , μ B ( z , t ) = ψ J , μ ( z ) i 2 π γ J , μ v J , μ b J B ( z v J , μ ) [ Θ ( z + v J , μ t ) Θ ( z + v J , μ t f ) ] ,
ψ J , μ B ( v J , μ t , t ) = ψ J , μ B ( v J , μ t + 0 + , t ) 2 + ψ J , μ B ( v J , μ t + 0 , t ) 2 ,
d b F B ( t ) d t = Π F ( t ) 2 i Ω n l * b F B ( t ) b S B ( t ) ,
d b B S ( t ) d t = Π S ( t ) i Ω n l b F B 2 ( t ) ,
S μ μ ( ω 1 , ω 2 ) = 2 π Ω n l * γ S , L * γ F , μ γ F , μ Φ ( ω 1 + ω 2 v S , L ) v S , L ( Ω F i ω 1 ) ( Ω F i ω 2 ) ( Ω S i ω 1 i ω 2 ) ,
C = 1 2 P F P ( 2 π R ) 2 A 1 16 ( α F 2 4 ) ( α S 2 4 ) ,
β = d ζ 1 d ζ 2 ( 2 π ) 3 2 ζ F 3 ζ S 2 e 2 ( ζ 1 + ζ 2 ) 2 ( ζ F 2 + ζ 1 2 ) ( ζ F 2 + ζ 2 2 ) [ ζ S 2 + ( ζ 1 + ζ 2 ) 2 ] .

Metrics