Abstract

The use of a 100ns pulse Nd:YAG laser is proposed to perform single-shot measurements by spontaneous Raman scattering. The long pulse duration is obtained thanks to a White cell placed inside the laser oscillator. This lengthens the pulse duration within the laser cavity, keeping almost the same beam quality as standard Nd:YAG lasers. The laser system is described, the advantages are compared with extra-cavity stretched lasers, and single-shot measurement of concentration in gas is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A.C.Eckbreth, ed., Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  2. R. Barlow, R. W. Dibble, and P. R. Lucht, Opt. Lett. 14, 263 (1989).
    [CrossRef] [PubMed]
  3. W. Meier, S. Prucker, M.-H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
    [CrossRef]
  4. M. B. Long, D. C. Fourguette, M. Carla Escoda, and C. B. Layne, Opt. Lett. 8, 244 (1983).
    [CrossRef] [PubMed]
  5. J. A. Wehrmeyer, J. M. Cramer, R. H. Eskridge, and C. C. Dobson, J. Propul. Power 17, 27 (2001).
    [CrossRef]
  6. W. Meier and O. Keck, Meas. Sci. Technol. 13, 741 (2002).
    [CrossRef]
  7. J. Kojima and Q. V. Nguyen, Appl. Opt. 41, 6360 (2002).
    [CrossRef] [PubMed]
  8. J. Kojima and Q. V. Nguyen, Meas. Sci. Technol. 15, 565 (2004).
    [CrossRef]
  9. Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
    [CrossRef]
  10. J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, Proc. Combust. Inst. 28, 1145 (2000).
    [CrossRef]
  11. C. Dreyer, T. Parker, and M. A. Linne, Appl. Phys. B 79, 121 (2004).
    [CrossRef]
  12. J. U. White, J. Opt. Soc. Am. 32, 285 (1942).
    [CrossRef]
  13. J. U. White, J. Opt. Soc. Am. 66, 411 (1976).
    [CrossRef]
  14. R. S. Barlow, C. D. Carter, and R. W. Pitz, in Applied Combustion Diagnostics, K.Kohse-Höinghaus and J.B.Jeffries, eds. (Taylor and Francis, 2002), pp. 384-407.
  15. P. C. Miles and R. S. Barlow, Meas. Sci. Technol. 11, 392 (2000).
    [CrossRef]
  16. M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, and J. Janicka, Int. J. Heat Fluid Flow 27, 636 (2006).
    [CrossRef]
  17. R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen, Combust. Flame 127, 2102 (2001).
    [CrossRef]

2006 (1)

M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, and J. Janicka, Int. J. Heat Fluid Flow 27, 636 (2006).
[CrossRef]

2004 (2)

C. Dreyer, T. Parker, and M. A. Linne, Appl. Phys. B 79, 121 (2004).
[CrossRef]

J. Kojima and Q. V. Nguyen, Meas. Sci. Technol. 15, 565 (2004).
[CrossRef]

2002 (2)

W. Meier and O. Keck, Meas. Sci. Technol. 13, 741 (2002).
[CrossRef]

J. Kojima and Q. V. Nguyen, Appl. Opt. 41, 6360 (2002).
[CrossRef] [PubMed]

2001 (2)

J. A. Wehrmeyer, J. M. Cramer, R. H. Eskridge, and C. C. Dobson, J. Propul. Power 17, 27 (2001).
[CrossRef]

R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen, Combust. Flame 127, 2102 (2001).
[CrossRef]

2000 (2)

P. C. Miles and R. S. Barlow, Meas. Sci. Technol. 11, 392 (2000).
[CrossRef]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, Proc. Combust. Inst. 28, 1145 (2000).
[CrossRef]

1996 (2)

W. Meier, S. Prucker, M.-H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

1989 (1)

1983 (1)

1976 (1)

1942 (1)

Appl. Opt. (1)

Appl. Phys. B (1)

C. Dreyer, T. Parker, and M. A. Linne, Appl. Phys. B 79, 121 (2004).
[CrossRef]

Combust. Flame (2)

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen, Combust. Flame 127, 2102 (2001).
[CrossRef]

Combust. Sci. Technol. (1)

W. Meier, S. Prucker, M.-H. Cao, and W. Stricker, Combust. Sci. Technol. 118, 293 (1996).
[CrossRef]

Int. J. Heat Fluid Flow (1)

M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, and J. Janicka, Int. J. Heat Fluid Flow 27, 636 (2006).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Propul. Power (1)

J. A. Wehrmeyer, J. M. Cramer, R. H. Eskridge, and C. C. Dobson, J. Propul. Power 17, 27 (2001).
[CrossRef]

Meas. Sci. Technol. (3)

W. Meier and O. Keck, Meas. Sci. Technol. 13, 741 (2002).
[CrossRef]

J. Kojima and Q. V. Nguyen, Meas. Sci. Technol. 15, 565 (2004).
[CrossRef]

P. C. Miles and R. S. Barlow, Meas. Sci. Technol. 11, 392 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (1)

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, Proc. Combust. Inst. 28, 1145 (2000).
[CrossRef]

Other (2)

R. S. Barlow, C. D. Carter, and R. W. Pitz, in Applied Combustion Diagnostics, K.Kohse-Höinghaus and J.B.Jeffries, eds. (Taylor and Francis, 2002), pp. 384-407.

A.C.Eckbreth, ed., Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Temporal profile of the laser pulse.

Fig. 2
Fig. 2

Schematic of the White cell used and of the beam paths.

Fig. 3
Fig. 3

Experimental setup for measurements in a Bunsen burner.

Tables (2)

Tables Icon

Table 1 Energy Threshold of Optical Breakdown for Short and Long Laser Pulse Duration for Different Focal Lengths and the Measured Laser Diameter at the Waist for the Long-Pulse Laser

Tables Icon

Table 2 Average Molar Fraction and Normalized rms in Fresh and Burnt Gases

Metrics