Abstract

Recently we demonstrated a biosensor based on a two-dimensional photonic crystal microcavity for detection of proteins. We present a theoretical and experimental study of a modified structure for single particle detection. With an active sensing volume of 0.15μm3, the device is capable of detecting 1fg of matter. Its performance is tested with latex spheres with sizes that fall in the size range of a variety of viruses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, Proc. SPIE 5511, 61 (2004).
    [CrossRef]
  2. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Opt. Lett. 29, 1093 (2004).
    [CrossRef] [PubMed]
  3. C. Kee and H. Lim, Phys. Rev. B 64, 121103 (2001).
    [CrossRef]
  4. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, Appl. Phys. Lett. 85, 4854 (2004).
    [CrossRef]
  5. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 1, 39 (2002).
    [CrossRef]
  6. C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 1712 (2004).
    [CrossRef]
  7. L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, Sens. Actuators B 120, 392 (2007).
    [CrossRef]
  8. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, Phys. Status Solidi A 182, 541 (2000).
    [CrossRef]
  9. H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, Adv. Funct. Mater. 15, 1851 (2005).
    [CrossRef]
  10. S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, J. Am. Chem. Soc. 123, 11797 (2001).
    [CrossRef] [PubMed]
  11. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, in CLEO/QELS Conference 2005 (Optical Society of America, 2005), postdeadline paper CPDA7.
  12. G. J. Sonek, in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333-336.
  13. M. R. Lee and P. M. Fauchet, Opt. Express 15, 4530 (2007).
    [CrossRef] [PubMed]
  14. E. W. Koneman, S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn, Jr., Color Atlas and Textbook of Diagnostic Microbiology (Lippincott, 1997).
  15. K. Srinivasan and O. Painter, Opt. Express 11, 579 (2003).
    [CrossRef] [PubMed]
  16. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature 445, 749 (2007).
    [CrossRef] [PubMed]
  17. M. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, Lab Chip 5, 545 (2005).
    [CrossRef] [PubMed]

2007

L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, Sens. Actuators B 120, 392 (2007).
[CrossRef]

M. R. Lee and P. M. Fauchet, Opt. Express 15, 4530 (2007).
[CrossRef] [PubMed]

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature 445, 749 (2007).
[CrossRef] [PubMed]

2005

M. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, Lab Chip 5, 545 (2005).
[CrossRef] [PubMed]

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, Adv. Funct. Mater. 15, 1851 (2005).
[CrossRef]

2004

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, Proc. SPIE 5511, 61 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Opt. Lett. 29, 1093 (2004).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

2003

2002

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 1, 39 (2002).
[CrossRef]

2001

C. Kee and H. Lim, Phys. Rev. B 64, 121103 (2001).
[CrossRef]

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, J. Am. Chem. Soc. 123, 11797 (2001).
[CrossRef] [PubMed]

2000

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, Phys. Status Solidi A 182, 541 (2000).
[CrossRef]

Adv. Funct. Mater.

H. Ouyang, M. Christophersen, R. Viard, B. L. Miller, and P. M. Fauchet, Adv. Funct. Mater. 15, 1851 (2005).
[CrossRef]

Appl. Phys. Lett.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, Appl. Phys. Lett. 85, 4854 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. R. Mateus, M. C. Y. Huang, J. E. Foley, P. R. Beatty, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 1712 (2004).
[CrossRef]

J. Am. Chem. Soc.

S. Chan, S. R. Horner, P. M. Fauchet, and B. L. Miller, J. Am. Chem. Soc. 123, 11797 (2001).
[CrossRef] [PubMed]

Lab Chip

M. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, Lab Chip 5, 545 (2005).
[CrossRef] [PubMed]

Nat. Mater.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 1, 39 (2002).
[CrossRef]

Nature

C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature 445, 749 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. Kee and H. Lim, Phys. Rev. B 64, 121103 (2001).
[CrossRef]

Phys. Status Solidi A

S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, Phys. Status Solidi A 182, 541 (2000).
[CrossRef]

Proc. SPIE

T. M. Geppert, S. L. Schweizer, J. Schilling, C. Jamois, A. V. Rhein, D. Pergande, R. Glatthaar, P. Hahn, A. Feisst, A. Lambrecht, and R. B. Wehrspohn, Proc. SPIE 5511, 61 (2004).
[CrossRef]

Sens. Actuators B

L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, Sens. Actuators B 120, 392 (2007).
[CrossRef]

Other

E. W. Koneman, S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn, Jr., Color Atlas and Textbook of Diagnostic Microbiology (Lippincott, 1997).

J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, in CLEO/QELS Conference 2005 (Optical Society of America, 2005), postdeadline paper CPDA7.

G. J. Sonek, in Proceedings of IEEE Conference on Microtechnologies in Medicine and Biology (IEEE, 2005), pp. 333-336.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron microscopy (SEM) picture of a typical device, (b) corresponding transmission spectrum, and (c) schematic of the experimental setup. A tunable laser (1440 to 1590 nm ) is used as the source, and the TE-polarized light is generated using a polarization controller plate. Light is coupled in and out of the PhC through ridge waveguides. An InGaAs detector is used to measure the transmitted signal.

Fig. 2
Fig. 2

Field profile calculation using the plane-wave expansion method on an 11 × 11 array with 32 grid points per supercell. From left to right: E x , E y , H z .

Fig. 3
Fig. 3

(a) Top view of our device with one latex sphere ( 370 nm in diameter) captured inside the central defect of the microcavity. (b) Normalized transmission spectra of the PhC microcavity. Curve (a) is measured before capture, and curve (b) is measured after one latex sphere is infiltrated inside the defect.

Fig. 4
Fig. 4

Resonance redshift versus particle diameter. In this calculation we assume a cylindrical particle with a diameter equal to the height, and the particle is attached to the defect sidewall along the Γ M direction.

Fig. 5
Fig. 5

The resonance redshift depends on the particle position along the Γ M direction, defined as the distance between the defect hole center and the particle center. A particle closer to the defect wall will produce a larger shift. The dashed line indicates the redshift introduced by the particle positioned at the edge of the defect.

Metrics