Abstract

We demonstrate a tunable nanosecond optical parametric oscillator with a narrowed signal spectrum. This was done by use of a volume Bragg grating based retroreflector, which makes the tuning simple and yields a compact design. Using periodically poled KTiOPO4 as the nonlinear medium, we generated 0.42mJ of signal energy at 760nm with a tuning range of 5nm (2.6THz) and a bandwidth of 0.25nm (130GHz) when the oscillator was pumped at 532nm with 1.3mJ of energy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
    [CrossRef] [PubMed]
  2. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 31, 1878 (2006).
    [CrossRef] [PubMed]
  3. F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, Opt. Eng. 43, 2017 (2004).
    [CrossRef]
  4. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, Opt. Express 15, 1003 (2007).
    [CrossRef] [PubMed]
  5. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, Appl. Opt. 38, 619 (1999).
    [CrossRef]
  6. L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, presented at the Solid State and Diode Laser Technology Review, Albuquerque, New Mexico, USA, June 8-10, 2004.
  7. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, Opt. Express 15, 13930 (2007).
    [CrossRef] [PubMed]
  8. H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
    [CrossRef]
  9. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, Opt. Lett. 25, 174 (2000).
    [CrossRef]
  10. V. Pasiskevicius, H. Karlsson, F. Laurell, R.Butkus, V. Smilgevicius, and A. Piskarskas, Opt. Lett. 26, 710 (2001).
    [CrossRef]
  11. H.-T. Hsieh, W. Liu, F. Havermeyer, C. Moser, and D. Psaltis, Appl. Opt. 45, 3774 (2006).
    [CrossRef] [PubMed]
  12. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. , 'Finite beams in reflective volume gratings: theory and experiments,' (to be published).

2007 (2)

2006 (2)

2005 (1)

2004 (1)

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, Opt. Eng. 43, 2017 (2004).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

1997 (1)

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. , 'Finite beams in reflective volume gratings: theory and experiments,' (to be published).

Opt. Eng. (1)

F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, Opt. Eng. 43, 2017 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (1)

L. B. Glebov, L. N. Glebova, V. I. Smirnov, M. Dubinskii, L. D. Merkle, S. Papernov, and A. W. Schmid, presented at the Solid State and Diode Laser Technology Review, Albuquerque, New Mexico, USA, June 8-10, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

OPO setup.

Fig. 2
Fig. 2

OPO signal spectra for angle tuning of the retroreflector.

Fig. 3
Fig. 3

OPO signal spectra for simultaneous retroreflector angle tuning and PPKTP temperature tuning (solid trace). For comparison the spectrum for an ordinary mirror OPO is also shown (dashed trace).

Fig. 4
Fig. 4

Pump depletion and OPO efficiency (left-hand axis) and signal energy (right-hand axis) versus pump energy. Filled symbols, Bragg grating OPO; open symbols, ordinary mirror version.

Metrics