Abstract

An efficient passively Q-switched Yb:LuAG microchip laser with Cr4+:YAG as saturable absorber was demonstrated for the first time to our knowledge. Slope efficiencies of 40% and 28% were measured for the initial transmission of Cr4+:YAG, T0=95% and 90%, respectively. Laser pulses with a pulse energy of 19μJ and a pulse width of 610ps at the repetition rate of 12.8kHz were achieved for T0=90%; the corresponding peak power of over 31kW was obtained. The lasers oscillated at two or three longitudinal modes owing to the broad emission spectra of Yb:LuAG and mode selection by Cr4+:YAG thin plate acting as an intracavity etalon.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. A. Kaminskii, Laser Photonics Rev. 1, 93 (2007).
    [CrossRef]
  2. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, Opt. Lett. 30, 2427 (2005).
    [CrossRef] [PubMed]
  3. J. Liu and V. Petrov, Opt. Lett. 31, 3294 (2006).
    [CrossRef] [PubMed]
  4. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, Sov. Phys. JETP 42, 440 (1976).
  5. D. S. Sumida, T. Y. Fan, and R. Hutcheson, in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1995), p. 348.
  6. J. Dong, A. Shirakawa, and K. Ueda, Appl. Phys. B 85, 513 (2006).
    [CrossRef]
  7. A. Brenier, C. Tu, Z. Zhu, and J. Li, Appl. Phys. Lett. 90, 071103 (2007).
    [CrossRef]
  8. J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, Opt. Lett. 32, 1728 (2007).
    [CrossRef] [PubMed]
  9. A. Brenier, Y. Guyot, H. Canibano, G. Boulon, A. Rodenas, D. Jaque, A. Eganyan, and A. G. Petrosyan, J. Opt. Soc. Am. B 23, 676 (2006).
    [CrossRef]
  10. T. Kasamatsu, H. Sekita, and Y. Kuwano, Appl. Opt. 38, 5149 (1999).
    [CrossRef]
  11. J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
    [CrossRef]
  12. J. J. Degnan, in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation (Chinese Academy of Sciences, 1996), p. 334.
  13. J. J. Degnan and J. J. Zayhowski, in Proceedings of the 11th International Workshop on Laser Ranging, (Federal Office for Cartography and Geodesy, Germany, 1998), p. 453.
  14. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, IEEE J. Quantum Electron. 34, 292 (1998).
    [CrossRef]
  15. W. Kochner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  16. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003).
    [CrossRef]
  17. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, Opt. Lett. 29, 65 (2004).
    [CrossRef] [PubMed]

2007

A. Brenier, C. Tu, Z. Zhu, and J. Li, Appl. Phys. Lett. 90, 071103 (2007).
[CrossRef]

A. A. Kaminskii, Laser Photonics Rev. 1, 93 (2007).
[CrossRef]

J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, Opt. Lett. 32, 1728 (2007).
[CrossRef] [PubMed]

2006

2005

2004

2003

1999

1998

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, IEEE J. Quantum Electron. 34, 292 (1998).
[CrossRef]

1995

J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
[CrossRef]

1976

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, Sov. Phys. JETP 42, 440 (1976).

Appl. Opt.

Appl. Phys. B

J. Dong, A. Shirakawa, and K. Ueda, Appl. Phys. B 85, 513 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Brenier, C. Tu, Z. Zhu, and J. Li, Appl. Phys. Lett. 90, 071103 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).
[CrossRef]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kokta, IEEE J. Quantum Electron. 34, 292 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photonics Rev.

A. A. Kaminskii, Laser Photonics Rev. 1, 93 (2007).
[CrossRef]

Opt. Lett.

Sov. Phys. JETP

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, Sov. Phys. JETP 42, 440 (1976).

Other

D. S. Sumida, T. Y. Fan, and R. Hutcheson, in OSA Proceedings on Advanced Solid-State Lasers (Optical Society of America, 1995), p. 348.

W. Kochner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

J. J. Degnan, in Proceedings of the 10th International Workshop on Laser Ranging Instrumentation (Chinese Academy of Sciences, 1996), p. 334.

J. J. Degnan and J. J. Zayhowski, in Proceedings of the 11th International Workshop on Laser Ranging, (Federal Office for Cartography and Geodesy, Germany, 1998), p. 453.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of LD end-pumped passively Q-switched Yb : LuAG Cr 4 + : YAG microchip lasers.

Fig. 2
Fig. 2

Average output power of passively Q-switched Yb : LuAG microchip lasers as a function of the absorbed pump power for T 0 = 95 , and 90% together with cw output power. The solid lines show the linear fits of the experimental data.

Fig. 3
Fig. 3

Comparison of stimulated emitting spectra of cw and passively Q-switched Yb : LuAG microchip lasers under different pump power levels.

Fig. 4
Fig. 4

Pulse characteristics (pulse energy, pulse width, repetition rate, and peak power) of LD end-pumped passively Q-switched Yb : LuAG microchip lasers as a function of absorbed pump power.

Fig. 5
Fig. 5

(a) Oscilloscope trace of pulse trains, (b) laser pulse with 610 ps pulse width and pulse energy of 19 μ J , corresponding to peak power of over 31 kW .

Metrics