Abstract

We present an original method to generate optical pulse trains with random time-interval values from incoherent broadband sources. More precisely, our technique relies on the remarkable properties of a line made of cascaded self-phase modulation-based optical regenerators. Depending on the regenerator parameters, various regimes with noticeably different physical behaviors can be reported.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Ciaramella and S. Trillo, IEEE Photon. Technol. Lett. 12, 849 (2000).
    [CrossRef]
  2. P. V. Mamyshev, in European Conference on Optical Communication, ECOC'98 (IEEE, 1998), pp. 475-476.
  3. N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  4. C. Finot, S. Pitois, and G. Millot, Opt. Lett. 30, 1776 (2005).
    [CrossRef] [PubMed]
  5. L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, Opt. Express 15, 5100 (2007).
    [CrossRef] [PubMed]
  6. M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, IEEE J. Sel. Top. Quantum Electron. 12, 736 (2006).
    [CrossRef]
  7. J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, Electron. Lett. 38, 890 (2002).
    [CrossRef]
  8. M. Matsumoto, Opt. Express 14, 11018 (2006).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, IEEE J. Sel. Top. Quantum Electron. 12, 736 (2006).
[CrossRef]

M. Matsumoto, Opt. Express 14, 11018 (2006).
[CrossRef] [PubMed]

2005 (1)

2002 (1)

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, Electron. Lett. 38, 890 (2002).
[CrossRef]

2000 (1)

E. Ciaramella and S. Trillo, IEEE Photon. Technol. Lett. 12, 849 (2000).
[CrossRef]

1988 (1)

Electron. Lett. (1)

J. Leuthold, G. Raybon, Y. Su, R. J. Essiambre, S. Cabot, J. Jacques, and M. Kauer, Electron. Lett. 38, 890 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, IEEE J. Sel. Top. Quantum Electron. 12, 736 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Ciaramella and S. Trillo, IEEE Photon. Technol. Lett. 12, 849 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

P. V. Mamyshev, in European Conference on Optical Communication, ECOC'98 (IEEE, 1998), pp. 475-476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the regenerator line. OBPF, optical bandpass filter; EDFA, erbium doped fiber amplifier. (b) Eigenpulse intensity (solid line) and phase (dashed line) profiles for configuration P1. (c) Asymptotical state of a Gaussian pulse propagating in the line as a function of its initial width and peak power. White-shaded area, the pulse converges toward the eigenpulse; black-shaded area, the pulse is attenuated and finally suppressed.

Fig. 2
Fig. 2

Evolution of an incoherent wave with the parameters of configuration P1. (a) Input, (b) N = 2 , and (c) N = 30 .

Fig. 3
Fig. 3

(a) and (b) Asymptotic states of a Gaussian pulse propagating in the line as a function of its initial width and peak power for configurations P2 and P3. (a) White-shaded area, the pulse converges toward the eigenpulse; black-shaded area, the pulse is attenuated and finally suppressed. (b) White-shaded area, the pulse converges toward the second eigenpulse; gray-shaded area, the pulse converges toward the first eigenpulse; black-shaded area, the pulse is attenuated and finally suppressed. (c) and (d) Asymptotic pulse trains for configurations P2 and P3. (e) Evolution of the different eigenpulse peak powers as a function of the dispersion parameter D for the configuration P3.

Fig. 4
Fig. 4

(a), (b), and (c) represent intensity and phase profiles of the pulses constituting the limit cycle. The pulses’ peak powers are 5.51, 4.39, and 8.35 W , respectively. (d) Input incoherent sequence. (e) Pulse train for N = 299 trips and (f) pulse train for N = 300 trips.

Tables (1)

Tables Icon

Table 1 Parameters of the Different Configurations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

u z + i 2 β 2 2 u t 2 = i γ u 2 u ,

Metrics