Abstract

We experimentally demonstrate control of a holding-beam-enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with a single pair of optical signals and for realizing all-optical control of any holding-beam-enabled flip-flop.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).
  2. A. Poustie, in 31st European Conference on Optical Communication 2005 (ECOC 2005) (IEEE, 2005), Vol. 3, pp. 475-478.
  3. A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, and T. H. Wood, IEEE Photon. Technol. Lett. 15, 1779 (2003).
    [CrossRef]
  4. R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, Jr., A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, Electron. Lett. 41, 347 (2005).
    [CrossRef]
  5. T. Nakai, N. Ogasawara, and R. Ito, Jpn. J. Appl. Phys., Part 2 22, L310 (1983).
    [CrossRef]
  6. N. Ogasawara and R. Ito, Jpn. J. Appl. Phys., Part 2 25, L739 (1986).
    [CrossRef]
  7. K. Inoue, Opt. Lett. 12, 918 (1987).
    [CrossRef] [PubMed]
  8. D. N. Maywar, G. P. Agrawal, and Y. Nakano, Opt. Express 6, 75 (2000).
    [CrossRef] [PubMed]
  9. D. N. Maywar, G. P. Agrawal, and Y. Nakano, J. Opt. Soc. Am. B 18, 1003 (2001).
    [CrossRef]
  10. A. Hurtado, A. Gonzalez-Marcos, and J. A. Martín-Pereda, in 2005 Spanish Conference on Electron Devices (IEEE, 2005), pp. 305-308.
    [CrossRef]
  11. M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chien, R. M. Jopson, and C. A. Burrus, IEEE Photon. Technol. Lett. 5, 406 (1993).
    [CrossRef]
  12. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
    [CrossRef]
  13. R. J. Manning, D. A. O. Davies, and J. K. Lucek, Electron. Lett. 30, 1233 (1994).
    [CrossRef]
  14. D. N. Maywar and G. P. Agrawal, IEEE J. Quantum Electron. 34, 2364 (1998).
    [CrossRef]
  15. D. N. Maywar and G. P. Agrawal, Opt. Express 3, 440 (1998).
    [CrossRef] [PubMed]

2005 (1)

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, Jr., A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, Electron. Lett. 41, 347 (2005).
[CrossRef]

2003 (1)

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, and T. H. Wood, IEEE Photon. Technol. Lett. 15, 1779 (2003).
[CrossRef]

2001 (1)

2000 (1)

1998 (2)

D. N. Maywar and G. P. Agrawal, IEEE J. Quantum Electron. 34, 2364 (1998).
[CrossRef]

D. N. Maywar and G. P. Agrawal, Opt. Express 3, 440 (1998).
[CrossRef] [PubMed]

1994 (1)

R. J. Manning, D. A. O. Davies, and J. K. Lucek, Electron. Lett. 30, 1233 (1994).
[CrossRef]

1993 (1)

M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chien, R. M. Jopson, and C. A. Burrus, IEEE Photon. Technol. Lett. 5, 406 (1993).
[CrossRef]

1987 (1)

1986 (1)

N. Ogasawara and R. Ito, Jpn. J. Appl. Phys., Part 2 25, L739 (1986).
[CrossRef]

1984 (1)

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

1983 (1)

T. Nakai, N. Ogasawara, and R. Ito, Jpn. J. Appl. Phys., Part 2 22, L310 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Appl. Phys. Lett. 44, 172 (1984).
[CrossRef]

Electron. Lett. (2)

R. J. Manning, D. A. O. Davies, and J. K. Lucek, Electron. Lett. 30, 1233 (1994).
[CrossRef]

R. Nagarajan, M. Kato, V. G. Dominic, C. H. Joyner, R. P. Schneider, Jr., A. G. Dentai, T. Desikan, P. W. Evans, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, J. L. Pleumeekers, R. A. Salvatore, R. B. Taylor, M. F. Van Leeuwen, J. Webjorn, M. Ziari, S. G. Grubb, D. Perkins, M. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, Electron. Lett. 41, 347 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. N. Maywar and G. P. Agrawal, IEEE J. Quantum Electron. 34, 2364 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. A. Newkirk, B. I. Miller, U. Koren, M. G. Young, M. Chien, R. M. Jopson, and C. A. Burrus, IEEE Photon. Technol. Lett. 5, 406 (1993).
[CrossRef]

A. Agarwal, S. Banerjee, D. F. Grosz, A. P. Kung, D. N. Maywar, and T. H. Wood, IEEE Photon. Technol. Lett. 15, 1779 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 2 (2)

T. Nakai, N. Ogasawara, and R. Ito, Jpn. J. Appl. Phys., Part 2 22, L310 (1983).
[CrossRef]

N. Ogasawara and R. Ito, Jpn. J. Appl. Phys., Part 2 25, L739 (1986).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (3)

G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).

A. Poustie, in 31st European Conference on Optical Communication 2005 (ECOC 2005) (IEEE, 2005), Vol. 3, pp. 475-478.

A. Hurtado, A. Gonzalez-Marcos, and J. A. Martín-Pereda, in 2005 Spanish Conference on Electron Devices (IEEE, 2005), pp. 305-308.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of operation for remote optical control of an optical flip-flop. Set (S) and reset (R) pulses act on the holding beam via XGM within a remotely located SOA; the modulated holding beam then turns the all-optical flip-flop (AOFF) on and off.

Fig. 2
Fig. 2

Spectral overlap of the control-signal, holding-beam, and SOA ASE. The gain experienced by the 1594 nm holding beam is increased by the 1424 nm set signals and decreased by the 1555 nm reset signals by means of gain pumping and gain saturation, respectively.

Fig. 3
Fig. 3

Experimental setup: LD, laser diode; MZ, Mach–Zehnder modulator; PG, pulse generator; TB, trigger box; WDM, wavelength-division multiplexing coupler; Circ, circulator; PC, polarization controller; SOA, semiconductor optical amplifier; AOFF, all-optical flip-flop; PD, photodiode.

Fig. 4
Fig. 4

All-optical flip-flop operation. (a) Control signals injected into the remote SOA, (b) XGM holding beam injected into the flip-flop, (c) optical power transmitted through the flip-flop.

Metrics