Abstract

For the first time, to our knowledge, radio-frequency arbitrary waveforms are time-multiplexed within 100ps by integrating wavelength switching, optical frequency comb generation, and spectral line-by-line shaping. The novel time-multiplexed scheme demonstrated here can be extended to wide user specifications and faster waveform transition time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
    [CrossRef] [PubMed]
  3. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  4. E. Frumker, E. Tal, Y. Silberberg, and D. Majer, Opt. Lett. 30, 2796 (2005).
    [CrossRef] [PubMed]
  5. Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, Opt. Lett. 30, 1557 (2005).
    [CrossRef] [PubMed]
  6. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [CrossRef]
  7. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, Opt. Lett. 32, 865 (2007).
    [CrossRef] [PubMed]
  8. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, IEEE Photon. Technol. Lett. 14, 1608 (2002).
    [CrossRef]
  9. S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 2739 (2005).
    [CrossRef]
  10. S. Ozharar, S. Gee, F. J. Quinlan, and P. J. Delfyett, Electron. Lett. 42, 714 (2006).
    [CrossRef]
  11. D. E. Leaird, Z. Jiang, and A. M. Weiner, Electron. Lett. 41, 817 (2005).
    [CrossRef]
  12. P. J. Delfyett, S. Gee, C. Myoung-Taek, H. Izadpanah, L. Wangkuen, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
    [CrossRef]
  13. J. D. McKinney, D. E. Leaird, and A. M. Weiner, Opt. Lett. 27, 1345 (2002).
    [CrossRef]
  14. I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
    [CrossRef]
  15. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
    [CrossRef]
  16. V. Lal, M. L. Masanovic, J. A. Summers, L. A. Coldren, and D. J. Blumenthal, IEEE Photon. Technol. Lett. 18, 577 (2006).
    [CrossRef]
  17. S. X. Wang, S. Xiao, and A. M. Weiner, Opt. Express 13, 9374 (2005).
    [CrossRef] [PubMed]

2007 (3)

2006 (3)

S. Ozharar, S. Gee, F. J. Quinlan, and P. J. Delfyett, Electron. Lett. 42, 714 (2006).
[CrossRef]

P. J. Delfyett, S. Gee, C. Myoung-Taek, H. Izadpanah, L. Wangkuen, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
[CrossRef]

V. Lal, M. L. Masanovic, J. A. Summers, L. A. Coldren, and D. J. Blumenthal, IEEE Photon. Technol. Lett. 18, 577 (2006).
[CrossRef]

2005 (6)

S. X. Wang, S. Xiao, and A. M. Weiner, Opt. Express 13, 9374 (2005).
[CrossRef] [PubMed]

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

D. E. Leaird, Z. Jiang, and A. M. Weiner, Electron. Lett. 41, 817 (2005).
[CrossRef]

S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 2739 (2005).
[CrossRef]

E. Frumker, E. Tal, Y. Silberberg, and D. Majer, Opt. Lett. 30, 2796 (2005).
[CrossRef] [PubMed]

Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, Opt. Lett. 30, 1557 (2005).
[CrossRef] [PubMed]

2002 (2)

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, Opt. Lett. 27, 1345 (2002).
[CrossRef]

2000 (2)

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1994 (1)

Electron. Lett. (2)

S. Ozharar, S. Gee, F. J. Quinlan, and P. J. Delfyett, Electron. Lett. 42, 714 (2006).
[CrossRef]

D. E. Leaird, Z. Jiang, and A. M. Weiner, Electron. Lett. 41, 817 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

V. Lal, M. L. Masanovic, J. A. Summers, L. A. Coldren, and D. J. Blumenthal, IEEE Photon. Technol. Lett. 18, 577 (2006).
[CrossRef]

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

S. Ozharar, F. Quinlan, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 17, 2739 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. ( λ a , λ b ) : two CW lasers; IM: intensity modulator; Q: data pattern; PM: phase modulator; f rep : comb frequency spacing.

Fig. 2
Fig. 2

(a) PMCW spectrum. Six lines within the rectangle are used for waveform generation. (b) Six-line selected PMCW combs when both CW lasers are on. (c), (d) sampling scope traces of rapid RF-AWG updates with Q = [ 1111 0000 ] : (c) switching between waveform phase modulation using two spectral lines from each comb; (d) switching between waveform frequencies.

Fig. 3
Fig. 3

Sampling scope traces of RF-AWG using six comb lines: (a) π-phase applied to λ a comb line { 1 } for transform-limited pulses; (b) π-phase applied to λ b comb lines { 3 to 1 and 1 } , resulting in optical odd-pulses. (c)–(e) RF-AWG update results: (c) Q = [ 0000 111111111111 ] ; (d) Q = [ 000 11111 ] ; and (e) Q = [ 11 00 ] .

Fig. 4
Fig. 4

(a) 28-line PMCW combs used for triangular RF waveforms: (b) switching between triangular and transform-limited pulses; (c) switching between triangular waves with opposite (fast, slow) trailing edges; and (d) waveform switching using a more complicated data pattern.

Metrics