Abstract

A biopsy is a well-known medical test used to evaluate tissue abnormality. Biopsy specimens are invasively taken from part of a lesion and visualized by microscope after chemical treatment. However, diagnosis by means of biopsy is not only variable due to depth and location of specimen but may also damage the specimen. In addition, only a limited number of specimens can be obtained, thus, the entire tissue morphology cannot be observed. We introduce a three-dimensional (3-D) endoscopic optical biopsy via optical coherence tomography employing a dual-axis microelectromechanical system scanning mirror. Since this technique provides high-resolution, noninvasive, direct, and multiple visualization of tissue, it could function as a clinical biopsy with advanced performance. The device was integrated with a conventional endoscope and utilized to generate in vivo 3-D clinical images in humans and animals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, Nat. Med. 1, 970 (1995).
    [CrossRef] [PubMed]
  3. W. B. Armstrong, J. M. Ridgway, D. E. Vokes, S. Guo, J. Perez, R. P. Jackson, M. Gu, J. Su, R. L. Crumley, T. Y. Shibuya, U. Mahmood, Z. Chen, and B. J. Wong, Laryngoscope 116, 1107 (2006).
    [CrossRef] [PubMed]
  4. B. E. Bouma and G. J. Tearney, Opt. Lett. 24, 531 (1999).
    [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
    [CrossRef] [PubMed]
  6. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, Opt. Express 11, 3598 (2003).
    [CrossRef] [PubMed]
  7. Y. Ahn, W. Jung, J. Zhang, and Z. Chen, Opt. Express 13, 8164 (2005).
    [CrossRef] [PubMed]
  8. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, Appl. Phys. Lett. 88, 163901 (2006).
    [CrossRef]
  9. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, Opt. Lett. 31, 2028 (2006).
    [CrossRef]
  10. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, Opt. Lett. 32, 256 (2007).
    [CrossRef] [PubMed]
  11. V. Milanovic, G. A. Matus, and D. T. McCormick, IEEE J. Sel. Top. Quantum Electron. 10, 462 (2004).
    [CrossRef]
  12. W. Jung, J. Zhang, R. M. Araghi, N. Hanna, M. Brenner, J. S. Nelson, and Z. Chen, Lasers Surg. Med. 35, 121 (2004).
    [CrossRef] [PubMed]
  13. W. Jung, J. Zhang, J. Chung, P. W. Smith, M. Brenner, J. S. Nelson, and Z. Chen, IEEE J. Sel. Top. Quantum Electron. 11, 811 (2005).
    [CrossRef]

2007 (1)

2006 (3)

W. B. Armstrong, J. M. Ridgway, D. E. Vokes, S. Guo, J. Perez, R. P. Jackson, M. Gu, J. Su, R. L. Crumley, T. Y. Shibuya, U. Mahmood, Z. Chen, and B. J. Wong, Laryngoscope 116, 1107 (2006).
[CrossRef] [PubMed]

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, Opt. Lett. 31, 2028 (2006).
[CrossRef]

2005 (2)

Y. Ahn, W. Jung, J. Zhang, and Z. Chen, Opt. Express 13, 8164 (2005).
[CrossRef] [PubMed]

W. Jung, J. Zhang, J. Chung, P. W. Smith, M. Brenner, J. S. Nelson, and Z. Chen, IEEE J. Sel. Top. Quantum Electron. 11, 811 (2005).
[CrossRef]

2004 (2)

V. Milanovic, G. A. Matus, and D. T. McCormick, IEEE J. Sel. Top. Quantum Electron. 10, 462 (2004).
[CrossRef]

W. Jung, J. Zhang, R. M. Araghi, N. Hanna, M. Brenner, J. S. Nelson, and Z. Chen, Lasers Surg. Med. 35, 121 (2004).
[CrossRef] [PubMed]

2003 (1)

1999 (1)

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef] [PubMed]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, Nat. Med. 1, 970 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, Appl. Phys. Lett. 88, 163901 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Milanovic, G. A. Matus, and D. T. McCormick, IEEE J. Sel. Top. Quantum Electron. 10, 462 (2004).
[CrossRef]

W. Jung, J. Zhang, J. Chung, P. W. Smith, M. Brenner, J. S. Nelson, and Z. Chen, IEEE J. Sel. Top. Quantum Electron. 11, 811 (2005).
[CrossRef]

Laryngoscope (1)

W. B. Armstrong, J. M. Ridgway, D. E. Vokes, S. Guo, J. Perez, R. P. Jackson, M. Gu, J. Su, R. L. Crumley, T. Y. Shibuya, U. Mahmood, Z. Chen, and B. J. Wong, Laryngoscope 116, 1107 (2006).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

W. Jung, J. Zhang, R. M. Araghi, N. Hanna, M. Brenner, J. S. Nelson, and Z. Chen, Lasers Surg. Med. 35, 121 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, Nat. Med. 1, 970 (1995).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, Science 276, 2037 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Developed MEMS-based OCT probe and scanning mirror: A, schematic of the 3-D endoscopic OCT probe. The steel lens housing contained a spacer to ensure proper working distance between the lens and mirror surface. B, completed probe compared for size with a U.S. quarter coin. The outer diameter of the probe was 5.5 mm . C, stereo microscope image of a two-axis MEMS mirror.

Fig. 2
Fig. 2

OCT probe incorporated with endoscopes: A, schematic and photograph of the OCT probe assembly with the flexible bronchoscope. By string loop methodology using dental floss, the OCT probe was affixed to the bronchoscope. B, image of OCT probe tethered to the flexible fiber-optic bronchoscope in pig trachea. C, schematic and photograph of the OCT probe incorporated with the rigid telescope. D, a rigid endoscope camera guides the location and movement of the OCT probe in the human airway for visualization and directed passage through upper airways.

Fig. 3
Fig. 3

In vivo 3-D OCT images obtained by the SD-OCT system. An imaging volume of 1 mm × 1 mm × 1.4 mm with 10 μ m voxels was acquired within 15 s . A, B, In vivo OCT images and histology of a rabbit rectum. The 3-D OCT image correlated very well with histology: mucosa (m), muscularis mucosa (mm), submucosa (sm), and muscularis propria (mp). C, In vivo images of a human finger; the arrows indicate the sweat ducts which are visualized as spiral shaped. D, True human vocal cord: important structures such as the stratified squamous epithelium (sse), basement membra (bm), and superficial lamina propria (slp) are clearly visible.

Metrics