Abstract

We show that the polarization mode dispersion of a constantly spun, single-mode fiber is strongly influenced by the autocorrelation function of its birefringence. In particular, under probable conditions, the mean square differential group delay of the spun fiber may even be higher than the delay that the same fiber would have if it were not spun.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. E. Schuh, X. Shan, and A. S. Siddiqui, J. Lightwave Technol. 16, 1583 (1998).
    [CrossRef]
  2. M. J. Li and D. A. Nolan, Opt. Lett. 23, 1659 (1998).
    [CrossRef]
  3. A.Galtarossa and C.R.Menyuk, eds., Polarization Mode Dispersion (Springer, 2005).
    [CrossRef]
  4. L. Palmieri, J. Lightwave Technol. 24, 4075 (2006).
    [CrossRef]
  5. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  6. M. J. Lighthill, Fourier Analysis and Generalised Functions (Cambridge U. Press, 1964).
  7. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 1984).

2006

1998

1996

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

A.Galtarossa and C.R.Menyuk, eds., Polarization Mode Dispersion (Springer, 2005).
[CrossRef]

M. J. Lighthill, Fourier Analysis and Generalised Functions (Cambridge U. Press, 1964).

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Evolution of q ( u ) for α = 1 (dashed curve) and α = 0.8 (continuous curve).

Fig. 2
Fig. 2

Evolution of Δ τ 2 ( z ) for L B = 20 m , L F = 4 m , and ν = 0.5 m 1 for curves (a)–(c) and ν = 0 for curves (d). Dashed, dashed–dotted, and continuous curves refer to the numerical results for α = 1 , 0.9, and 0.8, respectively. Markers represent the corresponding theoretical results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

r ( u ) = b i ( z + u ) b i ( z ) = σ 2 exp ( ρ u ) .
β E ( z ) = ( 2 μ ξ 1 ( z ) , 2 μ ξ 2 ( z ) , γ ) T ,
μ = 0 r ( u ) cos ( 4 π ν u ) d u ,
γ = 0 r ( u ) sin ( 4 π ν u ) d u .
Δ τ 2 ( z ) = 4 ( μ 2 + γ 2 ) ω 2 μ z 2 γ 2 ω 2 μ 2 [ 1 exp ( 2 μ z ) ] .
μ = σ 2 2 ρ C ( 2 ν ρ ) , γ = j σ 2 2 ρ C ̃ ( 2 ν ρ ) ,
X ( f ) k Δ k exp ( j 2 π u k f ) ( j 2 π f ) n + 1 ,
q ( u ) = cosh ( π 2 α u cos π 2 α ) sech ( π 2 u cos π 2 α ) .

Metrics