Abstract

We demonstrated for what is the first time to our knowledge photorefractive two-wave mixing in a bulk ferroelectric crystal using cw light at the telecommunication wavelength 1.55μm. In the Te-doped ferroelectric semiconductor Sn2P2S6 with absorption constant <0.1cm1 at 1.55μm, grating recording times of 10ms and a two-beam coupling gain of 2.8cm1 have been measured at 350mW power (intensity 440Wcm2) without a necessity to apply an external electric field. With a moving grating technique, a maximal gain of 6.0cm1 has been obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer, 2007).
  2. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
    [Crossref]
  3. K. Shcherbin, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), p. 391.
    [Crossref]
  4. S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
    [Crossref]
  5. M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
    [Crossref]
  6. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and C. Buchal, J. Opt. Soc. Am. B 13, 2544 (1996).
    [Crossref]
  7. M. Horowitz, B. Fischer, Y. Barad, and Y. Silberberg, Opt. Lett. 21, 1120 (1996).
    [Crossref] [PubMed]
  8. O. Beyer, I. Breunig, F. Kalkum, and K. Buse, Appl. Phys. Lett. 88, 051120 (2006).
    [Crossref]
  9. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
    [Crossref]
  10. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), 327.
    [Crossref]
  11. M. Jazbinsek, D. Haertle, G. Montemezzani, and P. Günter, J. Opt. Soc. Am. B 22, 2459 (2005).
    [Crossref]
  12. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, Opt. Lett. 21, 752 (1996).
    [Crossref] [PubMed]
  13. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1537 (2007).
    [Crossref]
  14. T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Express 13, 9890 (2005).
    [Crossref] [PubMed]
  15. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
    [Crossref]
  16. S. G. Odoulov, A. N. Shumelyuk, G. A. Brost, and K. M. Magde, Appl. Phys. Lett. 69, 3665 (1996).
    [Crossref]
  17. A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, Opt. Lett. 32, 1959 (2007).
    [Crossref] [PubMed]
  18. J.-Y. Moisan, N. Wolffer, O. Moine, P. Gravey, G. Martel, A. Aoudia, E. Repka, Y. Marfaing, and R. Triboulet, J. Opt. Soc. Am. B 11, 1655 (1994).
    [Crossref]
  19. P. Pogany, H. J. Eichler, and M. H. Ali, J. Opt. Soc. Am. B 15, 2716 (1998).
    [Crossref]
  20. L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
    [Crossref]
  21. A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Günter, Opt. Express 14, 2344 (2006).
    [Crossref] [PubMed]

2007 (2)

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1537 (2007).
[Crossref]

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, Opt. Lett. 32, 1959 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (3)

M. Jazbinsek, D. Haertle, G. Montemezzani, and P. Günter, J. Opt. Soc. Am. B 22, 2459 (2005).
[Crossref]

S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
[Crossref]

T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Express 13, 9890 (2005).
[Crossref] [PubMed]

2003 (1)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[Crossref]

2001 (1)

M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
[Crossref]

1998 (1)

1996 (4)

1995 (1)

L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
[Crossref]

1994 (1)

1990 (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
[Crossref]

Appl. Phys. Lett. (4)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
[Crossref]

S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
[Crossref]

O. Beyer, I. Breunig, F. Kalkum, and K. Buse, Appl. Phys. Lett. 88, 051120 (2006).
[Crossref]

S. G. Odoulov, A. N. Shumelyuk, G. A. Brost, and K. M. Magde, Appl. Phys. Lett. 69, 3665 (1996).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
[Crossref]

J. Opt. Soc. Am. B (5)

Opt. Commun. (2)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[Crossref]

M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
[Crossref]

Other (3)

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), 327.
[Crossref]

K. Shcherbin, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), p. 391.
[Crossref]

P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity dependence of the maximal measured two-wave mixing gain Γ in Sn 2 P 2 S 6 : Te at λ = 1.55 μ m and grating spacing Λ = 3.5 μ m . The solid curve is according to Eq. (1) for Γ 0 = 2.6 cm 1 and I dark = 120 W cm 2 .

Fig. 2
Fig. 2

Grating spacing dependence of the maximal two-wave mixing gain Γ 0 at the wavelength λ = 1.55 μ m . The solid curve is according to Eq. (2) for N eff = 0.32 × 10 16 cm 3 and r eff = 78 pm V .

Fig. 3
Fig. 3

Recording time τ as a function of the grating spacing Λ. The solid curve is according to Eq. (3), resulting in l d = 0.8 μ m , I s = 0.2 μ m , and σ dark + σ photo = 2 × 10 7 1 Ω m ( I = 440 W cm 2 , λ = 1.55 μ m ).

Tables (1)

Tables Icon

Table 1 Comparison of Materials for Photorefractive Applications at 1.5 μ m a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = Γ 0 1 + I dark I ,
Γ 0 = 2 π r eff n 3 λ k B T e cos ( 2 θ ) cos ( θ ) 2 π Λ ( 1 + ( 2 π l s Λ ) 2 ) ,
τ = ϵ ϵ 0 σ dark + σ photo [ 1 + ( 2 π l d Λ ) 2 1 + ( 2 π l s Λ ) 2 ] ,

Metrics