Abstract

We demonstrated for what is the first time to our knowledge photorefractive two-wave mixing in a bulk ferroelectric crystal using cw light at the telecommunication wavelength 1.55μm. In the Te-doped ferroelectric semiconductor Sn2P2S6 with absorption constant <0.1cm1 at 1.55μm, grating recording times of 10ms and a two-beam coupling gain of 2.8cm1 have been measured at 350mW power (intensity 440Wcm2) without a necessity to apply an external electric field. With a moving grating technique, a maximal gain of 6.0cm1 has been obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer, 2007).
  2. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
    [CrossRef]
  3. K. Shcherbin, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), p. 391.
    [CrossRef]
  4. S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
    [CrossRef]
  5. M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
    [CrossRef]
  6. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and C. Buchal, J. Opt. Soc. Am. B 13, 2544 (1996).
    [CrossRef]
  7. M. Horowitz, B. Fischer, Y. Barad, and Y. Silberberg, Opt. Lett. 21, 1120 (1996).
    [CrossRef] [PubMed]
  8. O. Beyer, I. Breunig, F. Kalkum, and K. Buse, Appl. Phys. Lett. 88, 051120 (2006).
    [CrossRef]
  9. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
    [CrossRef]
  10. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), 327.
    [CrossRef]
  11. M. Jazbinsek, D. Haertle, G. Montemezzani, and P. Günter, J. Opt. Soc. Am. B 22, 2459 (2005).
    [CrossRef]
  12. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, Opt. Lett. 21, 752 (1996).
    [CrossRef] [PubMed]
  13. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1537 (2007).
    [CrossRef]
  14. T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Express 13, 9890 (2005).
    [CrossRef] [PubMed]
  15. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
    [CrossRef]
  16. S. G. Odoulov, A. N. Shumelyuk, G. A. Brost, and K. M. Magde, Appl. Phys. Lett. 69, 3665 (1996).
    [CrossRef]
  17. A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, Opt. Lett. 32, 1959 (2007).
    [CrossRef] [PubMed]
  18. J.-Y. Moisan, N. Wolffer, O. Moine, P. Gravey, G. Martel, A. Aoudia, E. Repka, Y. Marfaing, and R. Triboulet, J. Opt. Soc. Am. B 11, 1655 (1994).
    [CrossRef]
  19. P. Pogany, H. J. Eichler, and M. H. Ali, J. Opt. Soc. Am. B 15, 2716 (1998).
    [CrossRef]
  20. L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
    [CrossRef]
  21. A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Günter, Opt. Express 14, 2344 (2006).
    [CrossRef] [PubMed]

2007 (2)

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1537 (2007).
[CrossRef]

A. Shumelyuk, A. Hryhorashchuk, S. Odoulov, and D. R. Evans, Opt. Lett. 32, 1959 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (3)

S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
[CrossRef]

M. Jazbinsek, D. Haertle, G. Montemezzani, and P. Günter, J. Opt. Soc. Am. B 22, 2459 (2005).
[CrossRef]

T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Express 13, 9890 (2005).
[CrossRef] [PubMed]

2003 (1)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

2001 (1)

M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
[CrossRef]

1998 (1)

1996 (4)

1995 (1)

L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
[CrossRef]

1994 (1)

1990 (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

Appl. Phys. Lett. (4)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, Appl. Phys. Lett. 57, 846 (1990).
[CrossRef]

S. Tay, J. Thomas, M. Eralp, L. Guoqiang, R. A. Norwood, A. Schulzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, and N. Peyghambarian, Appl. Phys. Lett. 87, 171105 (2005).
[CrossRef]

O. Beyer, I. Breunig, F. Kalkum, and K. Buse, Appl. Phys. Lett. 88, 051120 (2006).
[CrossRef]

S. G. Odoulov, A. N. Shumelyuk, G. A. Brost, and K. M. Magde, Appl. Phys. Lett. 69, 3665 (1996).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. VInetskii, Ferroelectrics 22, 961 (1979).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (2)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

M. Wesner, C. Herden, E. Kraetzig, D. Kip, and P. Moretti, Opt. Commun. 188, 69 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

L. A. de Montmorillon, Ph. Delaye, J. C. Launay, and G. Roosen, Opt. Mater. 4, 233 (1995).
[CrossRef]

Other (3)

K. Shcherbin, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), p. 391.
[CrossRef]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), 327.
[CrossRef]

P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity dependence of the maximal measured two-wave mixing gain Γ in Sn 2 P 2 S 6 : Te at λ = 1.55 μ m and grating spacing Λ = 3.5 μ m . The solid curve is according to Eq. (1) for Γ 0 = 2.6 cm 1 and I dark = 120 W cm 2 .

Fig. 2
Fig. 2

Grating spacing dependence of the maximal two-wave mixing gain Γ 0 at the wavelength λ = 1.55 μ m . The solid curve is according to Eq. (2) for N eff = 0.32 × 10 16 cm 3 and r eff = 78 pm V .

Fig. 3
Fig. 3

Recording time τ as a function of the grating spacing Λ. The solid curve is according to Eq. (3), resulting in l d = 0.8 μ m , I s = 0.2 μ m , and σ dark + σ photo = 2 × 10 7 1 Ω m ( I = 440 W cm 2 , λ = 1.55 μ m ).

Tables (1)

Tables Icon

Table 1 Comparison of Materials for Photorefractive Applications at 1.5 μ m a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = Γ 0 1 + I dark I ,
Γ 0 = 2 π r eff n 3 λ k B T e cos ( 2 θ ) cos ( θ ) 2 π Λ ( 1 + ( 2 π l s Λ ) 2 ) ,
τ = ϵ ϵ 0 σ dark + σ photo [ 1 + ( 2 π l d Λ ) 2 1 + ( 2 π l s Λ ) 2 ] ,

Metrics