Abstract

A novel type of optical frequency domain reflectometry with a measurement range much longer than the laser coherence length is proposed and experimentally demonstrated. To reduce the influence of laser phase noise, the measurement signal is compensated by using reference signals generated from a single auxiliary interferometer supported by a newly proposed compensation process. The compensation is accomplished numerically with a computer for each section of the delay fiber length in an auxiliary interferometer after only one data acquisition. By using the proposed technique, it is confirmed experimentally that the laser phase noise is well compensated even beyond the coherence length.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Eickhoff and R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).
    [CrossRef]
  2. H. Barfuss and E. Brinkmeyer, J. Lightwave Technol. 7, 3 (1989).
    [CrossRef]
  3. U. Glombitza and E. Brinkmeyer, J. Lightwave Technol. 11, 1377 (1993).
    [CrossRef]
  4. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
    [CrossRef] [PubMed]
  5. R. Passy, N. Gisin, and J. P. von der Weid, IEEE Photon. Technol. Lett. 7, 667 (1995).
    [CrossRef]
  6. G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, Electron. Lett. 32, 926 (1996).
    [CrossRef]
  7. S. Venkatesh and W. V. Sorin, J. Lightwave Technol. 11, 1694 (1993).
    [CrossRef]
  8. Y. Koshikiya, X. Fan, and F. Ito, in Proceedings of the 33rd European Conference on Optical Communication (ECOC'2007) (VDE Verlag GMBH, 2007), Vol. 2, paper Tu3.6.2, p. 89.

2005

1996

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, Electron. Lett. 32, 926 (1996).
[CrossRef]

1995

R. Passy, N. Gisin, and J. P. von der Weid, IEEE Photon. Technol. Lett. 7, 667 (1995).
[CrossRef]

1993

S. Venkatesh and W. V. Sorin, J. Lightwave Technol. 11, 1694 (1993).
[CrossRef]

U. Glombitza and E. Brinkmeyer, J. Lightwave Technol. 11, 1377 (1993).
[CrossRef]

1989

H. Barfuss and E. Brinkmeyer, J. Lightwave Technol. 7, 3 (1989).
[CrossRef]

1981

W. Eickhoff and R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).
[CrossRef]

Appl. Phys. Lett.

W. Eickhoff and R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).
[CrossRef]

Electron. Lett.

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, Electron. Lett. 32, 926 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Passy, N. Gisin, and J. P. von der Weid, IEEE Photon. Technol. Lett. 7, 667 (1995).
[CrossRef]

J. Lightwave Technol.

S. Venkatesh and W. V. Sorin, J. Lightwave Technol. 11, 1694 (1993).
[CrossRef]

H. Barfuss and E. Brinkmeyer, J. Lightwave Technol. 7, 3 (1989).
[CrossRef]

U. Glombitza and E. Brinkmeyer, J. Lightwave Technol. 11, 1377 (1993).
[CrossRef]

Opt. Express

Other

Y. Koshikiya, X. Fan, and F. Ito, in Proceedings of the 33rd European Conference on Optical Communication (ECOC'2007) (VDE Verlag GMBH, 2007), Vol. 2, paper Tu3.6.2, p. 89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. SSB, single sideband; DFL, delay fiber loop; L ref , reference length, the length of delay fiber in auxiliary interferometer; BPD, balanced photodetector; EF, electrical filter; PC, personal computer; FUT, fiber under test.

Fig. 2
Fig. 2

Experimental results of measured reflectivity at a round-trip distance of 4800 m compensated based on (a) the third CGP and (b) the forth CGP for a round-trip distance of 4 L ref .

Fig. 3
Fig. 3

SNR of reflection at different distances by different compensation signals. Filled squares, without PNC; open squares, compensated based on original reference signal; open circles, compensated based on second CGP; crosses, compensated based on third CGP; open triangles, compensated based on fourth CGP.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 exp { j [ ω 0 t + π γ t 2 + θ ( t ) ] } ,
I FUT R cos [ 2 π γ τ FUT t + θ ( t ) θ ( t τ FUT ) + C FUT ] ,
I ref cos [ 2 π γ τ ref t + θ ( t ) θ ( t τ ref ) + C ref ] = cos [ X 1 ( t ) ] ,
I FUT ( t M ) = R cos [ ( π τ FUT τ ref ) M + Φ ( t M ) + C FUT ref ] ,
Φ ( t ) = [ θ ( t ) θ ( t τ FUT ) ] τ FUT τ ref [ θ ( t ) θ ( t τ ref ) ] .
I N ref cos [ 2 π γ N τ ref t + θ ( t ) θ ( t N τ ref ) + C N ref ] = cos [ X N ( t ) ] ,
X N ( t ) = n = 0 N 1 X 1 ( t n τ ref ) ,

Metrics