Abstract

A new method of fiber-optic based beam shaping is investigated both numerically and experimentally. A cylindrically symmetric method of lines (MoLs) is developed to simulate the device. The device is fabricated by fusion splicing a predetermined length of multimode fiber (MMF) to a single-mode fiber. The multimode interference (MMI) effects create ring-shaped field profiles at certain positions inside the MMF. The shaped beam can be used in medical applications requiring particular irradiation patterns.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
    [CrossRef]
  2. M. Rioux, R. Tremblay, and P. A. Bélanger, Appl. Opt. 17, 1532 (1978).
    [CrossRef] [PubMed]
  3. Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
    [CrossRef]
  4. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
    [CrossRef]
  5. A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
    [CrossRef]
  6. W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 31, 2547 (2006).
    [CrossRef] [PubMed]
  7. Q. Wang and G. Farrell, Opt. Lett. 31, 317 (2006).
    [CrossRef] [PubMed]
  8. Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
    [CrossRef]
  9. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  10. D. Marcuse, J. Lightwave Technol. 5, 125 (1987).
    [CrossRef]
  11. V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

2006 (3)

2005 (1)

F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
[CrossRef]

2004 (1)

2003 (1)

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

1998 (1)

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

1987 (1)

D. Marcuse, J. Lightwave Technol. 5, 125 (1987).
[CrossRef]

1985 (1)

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

1978 (1)

Bélanger, P. A.

Dickley, F. M.

F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
[CrossRef]

Dong, Y.

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Farrell, G.

Q. Wang and G. Farrell, Opt. Lett. 31, 317 (2006).
[CrossRef] [PubMed]

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Gao, H.

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Gu, X.

Holswade, S. C.

F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
[CrossRef]

Johnson, E. G.

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Li, Q.

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 5, 125 (1987).
[CrossRef]

Mehta, A.

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

Mohammed, W. S.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Righini, G.

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

Rioux, M.

Russo, V.

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

Shealy, D. L.

F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
[CrossRef]

Shen, Z.

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sottini, S.

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

Tremblay, R.

Trigari, S.

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

Wang, Q.

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Q. Wang and G. Farrell, Opt. Lett. 31, 317 (2006).
[CrossRef] [PubMed]

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

A. Mehta, W. Mohammed, and E. G. Johnson, IEEE Photon. Technol. Lett. 15, 1129 (2003).
[CrossRef]

J. Lightwave Technol. (3)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

D. Marcuse, J. Lightwave Technol. 5, 125 (1987).
[CrossRef]

W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006).
[CrossRef]

Opt. Laser Technol. (1)

Q. Li, H. Gao, Y. Dong, Z. Shen, and Q. Wang, Opt. Laser Technol. 30, 511 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

V. Russo, G. Righini, S. Sottini, and S. Trigari, Proc. SPIE 522, 166 (1985).

Other (1)

F. M. Dickley, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MoL simulation of the field inside MMF ( λ = 1.55 μ m ) .

Fig. 2
Fig. 2

Intensity profiles at the planes where ring profiles are formed inside the MMF.

Fig. 3
Fig. 3

Output intensity profiles out of the MMF facet at four different positions (grid scale 32 μ m in the x direction and 34 μ m in the y direction).

Fig. 4
Fig. 4

Field profile before the MMF facet inside the MMF and after the MMF inside air. The dashed line shows the MMF–air interface.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

β ν 1 β ν 2 = u ν 2 2 u ν 1 2 2 k a 2 n core ,
u ν = ( 2 ν 1 2 ) π 2 .
( β ν p 1 β ν p ) z = ( u ν p 2 u ν p 1 2 2 k a 2 n core ) z = ( π 2 ( 4 ν p 3 ) 4 k a 2 n core ) z .
z m = 4 k a 2 n core π ( 4 ν p 3 ) ( 2 m 1 ) = L r ( 2 m 1 ) , m = 1 , 2 , 3 , ,
L r = 4 k a 2 n core π ( 4 ν p 3 ) ,
( β ν β ν p ) z = π 2 [ 2 ( ν 2 ν p 2 ) + ( ν p ν ) ] 4 n core k a 2 z = π ( 2 q 1 ) ,
q = 1 , 2 , 3 , .
z ring = 4 n core k a 2 π .
z ring = ( 4 ν p 3 ) L r .

Metrics