Abstract

Backscattering spectroscopic contrast using angle-resolved optical coherence tomography is demonstrated as a powerful method for determining scatterer diameter with subwavelength resolution. By applying spectroscopic digital processing algorithms to interferograms acquired in the frequency domain with a wavelength-swept laser centered at 1295nm, it was shown that differences in wavelength-dependent backscattering from 0.3 and 1μm diameter microspheres can be clearly resolved. The observed backscattering spectra were found to be consistent with Mie theory. High levels of speckle noise reduction achieved by angular compounding increased the spatial resolution at which backscattering spectra could be accurately differentiated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111 (2000).
    [CrossRef]
  2. C. Y. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, Opt. Lett. 31, 1079 (2006).
    [CrossRef] [PubMed]
  3. C. Y. Xu, P. S. Carney, and S. A. Boppart, Opt. Express 13, 5450 (2005).
    [CrossRef] [PubMed]
  4. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, Opt. Lett. 30, 1015 (2005).
    [CrossRef] [PubMed]
  5. H. Cang, T. Sun, Z. Y. Li, J. Y. Chen, B. J. Wiley, Y. N. Xia, and X. D. Li, Opt. Lett. 30, 3048 (2005).
    [CrossRef] [PubMed]
  6. T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, J. Biomed. Opt. 10, 024036 (2005).
    [CrossRef]
  7. J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
    [CrossRef]
  8. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, Opt. Express 12, 1677 (2004).
    [CrossRef] [PubMed]
  9. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, Opt. Express 14, 4736 (2006).
    [CrossRef] [PubMed]
  10. C. Y. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, Opt. Express 12, 4790 (2004).
    [CrossRef] [PubMed]
  11. N. N. Boustany, S. C. Kuo, and N. V. Thakor, Opt. Lett. 26, 1063 (2001).
    [CrossRef]

2006 (2)

2005 (4)

2004 (2)

2001 (1)

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Aalders, M. C. G.

Bizheva, K.

Boppart, S. A.

Bouma, B. E.

Boustany, N. N.

Cang, H.

Carney, P. S.

Chen, J. Y.

Desjardins, A. E.

Do, M. N.

Drexler, W.

Faber, D. J.

Fercher, A. F.

Fujimoto, J. G.

Hermann, B.

Ippen, E. P.

Kartner, F. X.

Kuo, S. C.

Li, X. D.

Li, Z. Y.

Lindmo, T.

T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, J. Biomed. Opt. 10, 024036 (2005).
[CrossRef]

Luo, W.

Marks, D. L.

Mik, E. G.

Morgner, U.

Pitris, C.

Povazay, B.

Ralston, T. S.

Røyset, A.

T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, J. Biomed. Opt. 10, 024036 (2005).
[CrossRef]

Sattmann, H.

Schmetterer, L.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Støren, T.

T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, J. Biomed. Opt. 10, 024036 (2005).
[CrossRef]

Sun, T.

Svaasand, L. O.

T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, J. Biomed. Opt. 10, 024036 (2005).
[CrossRef]

Tan, W.

Tearney, G. J.

Thakor, N. V.

Unterhuber, A.

Vakoc, B. J.

van Leeuwen, T. G.

Vinegoni, C.

Wiley, B. J.

Xia, Y. N.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Xu, C. Y.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Biomed. Opt. 4, 95 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

OCT images of the phantom obtained (a) from a single angle and (b) from compounding across 64 angles. The arrow indicates the boundary between the sections of the phantom containing 1 μ m spheres (left) and that with 0.3 μ m microspheres (right). The transverse extension of the images is 5 mm . The scale bar indicates 100 μ m in the axial direction within the phantom.

Fig. 2
Fig. 2

The backscattering cross section of 1 μ m spheres increases by a factor of 2 across the 130 nm tuning range of the source laser, whereas that of the 0.3 μ m spheres decreases by a factor of 0.8. The measured values, obtained by averaging backscattering spectra from corresponding sections of the agar tissue phantom (circles), are in good agreement with theoretical values obtained from Mie Theory (solid and dashed). The data were scaled uniformly so that the theoretical values at the shortest wavelength were unity.

Fig. 3
Fig. 3

Spectroscopic OCT images of the phantom obtained (a) from a single angular sample and by averaging across (b) 4, (c) 16, and (d) 64 angular samples. The pixels are color coded according to the observed change in wavelength-dependent backscattering. The arrow indicates the boundary between the sections of the phantom containing 1 μ m spheres (left) and 0.3 μ m microspheres (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( z j , k i ) G ( k i ) μ b ( z j , k i ) .

Metrics