Abstract

We present an analysis of a high index core symmetric Bragg reflection waveguide (BRW) design based on a GaNAlxGa1xN system for efficient quasi-phase-matched second-harmonic generation for broadband applications. By choosing the fundamental frequency to be a BRW mode and suitably tailoring the overall dispersion characteristics, the strong dispersion of the second-harmonic mode is partially canceled, leading to phase matching between the fundamental and second-harmonic over a broad range of wavelengths. The crucial interplay between the dispersive behavior of the fundamental and second-harmonic wave manifests as a broad acceptance bandwidth of 33nm accompanied with appreciable conversion efficiency (22.8%W) for a 10mm long waveguide. The impact of tailoring the dispersion characteristics on the conversion efficiency is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
    [CrossRef]
  3. M. Cha, Opt. Lett. 23, 250 (1998).
    [CrossRef]
  4. Z. Zheng and A. M. Weiner, Opt. Lett. 25, 984 (2000).
    [CrossRef]
  5. S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003).
    [CrossRef]
  6. G. Y. Wang and E. M. Garmire, Opt. Lett. 19, 254 (1994).
    [CrossRef] [PubMed]
  7. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, Opt. Lett. 27, 1046 (2002).
    [CrossRef]
  8. H. Zhu, T. Wang, W. Zheng, P. Yuan, and L. Qian, Opt. Express 12, 2150 (2004).
    [CrossRef] [PubMed]
  9. J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
    [CrossRef]
  10. A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
    [CrossRef]
  11. S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
    [CrossRef]
  12. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
    [CrossRef]
  13. B. R. West and A. S. Helmy, Opt. Express 14, 4073 (2006).
    [CrossRef] [PubMed]
  14. A. S. Helmy, B. Bijlani, and P. Abolghasem, Opt. Lett. 32, 2399 (2007).
    [CrossRef] [PubMed]
  15. G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
    [CrossRef]

2007

2006

2005

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

2004

2003

S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003).
[CrossRef]

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

2002

2001

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

2000

1998

1997

J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
[CrossRef]

1994

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1976

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Abolghasem, P.

Ashihara, S.

Bhardwaj, M.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

Bijlani, B.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Cha, M.

Chowdhury, A.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Fujimura, M.

Garmire, E. M.

Grandjean, N.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Harrison, I.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

Helmy, A. S.

Hughes, J. L. P.

J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kurimura, S.

Kuroda, K.

Kurz, J. R.

Larkins, E. C.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

Laws, G. M.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Massies, J.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Molloy, C.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

Ng, Hock M.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

Parameswaran, K. R.

Pezzagna, S.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Qian, L.

Ro, J. H.

Roussev, R. V.

Route, R. K.

Shimura, T.

Sipe, J. E.

J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
[CrossRef]

Somerford, D.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

Taira, T.

Vennegues, P.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Wang, G. Y.

Wang, T.

Wang, Y.

J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
[CrossRef]

Weimann, N. G.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

Weiner, A. M.

West, B. R.

Wieck, A. D.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Yariv, A.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Yeh, P.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Yu, N. E.

Yuan, P.

Zheng, W.

Zheng, Z.

Zhu, H.

Appl. Phys. Lett.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003).
[CrossRef]

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Appl. Phys.

G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed symmetric BRW that has core (GaN) and periodic cladding of Al 0.01 Ga 0.99 N ( n 1 ) and Al 0.40 Ga 0.60 N ( n 2 ) layers. The thicknesses of the layers corresponding to refractive index n c , n 1 , and n 2 are d c , d 1 , and d 2 , respectively.

Fig. 2
Fig. 2

Plot of variation of δ β with fundamental wavelength ( λ F ) .

Fig. 3
Fig. 3

Plot of conversion efficiency with fundamental wavelength ( λ F ) .

Fig. 4
Fig. 4

Plot of modal intensity patterns of the BRW mode (SH) and TIR guided mode (FF).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FWHM = 2 ( 5.57 l ) 1 2 [ 2 ( δ β ) λ 2 λ = λ F ] 1 2 .

Metrics